Unsafe Order-2 Tree Languages are
Context-Sensitive

Naoki Kobayashi!, Kazuhiro Inaba?, and Takeshi Tsukada®

1 The University of Tokyo
2 Google Inc.
3 University of Oxford and JSPS Postdoctoral Fellow for Research Abroad

Abstract. Higher-order grammars have been extensively studied in 1980’s
and interests in them have revived recently in the context of higher-order
model checking and program verification, where higher-order grammars
are used as models of higher-order functional programs. A lot of theoret-
ical questions remain open, however, for unsafe higher-order grammars
(grammars without the so-called safety condition). In this paper, we
show that any tree languages generated by order-2 unsafe grammars are
context-sensitive. This also implies that any unsafe order-3 word lan-
guages are context-sensitive. The proof involves novel technique based
on typed lambda-calculus, such as type-based grammar transformation.

1 Introduction

Higher-order (or high-level) grammars, where non-terminal symbols may take
higher-order functions as arguments, have been introduced in 1970’s [19, 20, 15]
and extensively studied in 1980’s [3]. They form a natural extension of Chom-
sky hierarchy [20], in the sense that they form an infinite language hierarchy,
where the order-0 and order-1 word languages are exactly regular languages and
context-free languages respectively. Recently, higher-order grammars have been
studied as models of higher-order programs [8,16], and applied to automated
verification of higher-order programs [9,13,17].

Earlier theoretical results on higher-order grammars [3,8, 6] have been for
those with the so-called safety restriction [8] (or, with the condition on derived
types [3]). Although some of the analogous results have recently been obtained for
unsafe grammars (those without the safety restriction) [16, 7, 14], many problems
still remain open, such as the context-sensitiveness of higher-order languages.
This is a pity, as many of the recent applications of higher-order grammars
make use of unsafe ones.

In the present paper, we are interested in the open problem mentioned above:
whether the languages generated by higher-order grammars are context-sensitive.
As a solution to a special case of the open problem, we show that the tree lan-
guages (or more precisely, the word languages obtained by preorder traversal of
trees, because the context-sensitiveness is usually the terminology for word lan-
guages) generated by any order-2 grammars are also context-sensitive. Since the

order-(n + 1) word languages can be obtained as the leaf languages of trees gen-
erated by order-n grammars [11], the result also implies that the word languages
generated by order-3 grammars are context-sensitive.!

Our techniques to prove the context-sensitiveness of order-2 tree languages
are quite different from those used in Inaba and Maneth’s proof for context-
sensitiveness of safe languages [6]. Recall that the context-sensitiveness is equiv-
alent to the membership problem being NLIN-SPACE (non-deterministic linear
space). To show that, Inaba and Maneth decomposed higher-order (safe) trans-
ducers (whose image is the set of higher-order safe languages) into macro tree
transducers, and transformed the transducers so that the size of intermediate
trees increases monotonically. For the unsafe case, similar decomposition ap-
pears to be extremely difficult.

Instead of going through transducers or automata, we directly reason about
grammars with a help of techniques of typed A-calculus (intersection types, in
particular). The high-level structure of our proof is actually similar to that of the
(straightforward) proof of the context-sensitivity of context-free languages. For a
context-free grammar (say, {S — aAA, A — €| adb}), one can eliminate e-rules
(A — € in the above example) to ensure that the size of intermediate phrases
occurring in a production of a final word w is bounded by the size of w. For
example, the above grammar can be transformed to {S — adA | a|ad, A —
aAb | ab}, by propagating information that A may be replaced by e. The first
part of our proof shows that intersection types can be used to achieve a similar
(but more elaborate) transformation of higher-order grammars to exclude out
certain rewriting rules. More precisely, given a finite set C of functions, one can
exclude out rules that allow non-terminals to behave like one of the functions
in C. The second part of the proof shows that for the order-2 case, if we choose
as C a set of “permutator [2]-like” terms, then the size of intermediate terms
occurring in a production of a tree 7 is linearly bounded by the size of 7. Thus,
given an order-2 grammar G, one can first transform G to an equivalent grammar
G’ that satisfies the property above, and then the membership of a tree 7 in the
tree language of G’ can be decided in space linear in 7. This implies that the
language of (word representation of) trees generated by G is context-sensitive.

From a practical viewpoint, the result may be applicable to the following
problem: given a program P and a possible execution trace (or an execution
tree) m, is 7 a real trace of P? If P is a simply-typed program with recursion
and finite base types, one can use the technique of [9] to construct a grammar
that represents all the possible traces of P. One can then use the above algorithm
to decide the membership problem in linear space with respect to the size of 7. If
one asks many questions for a fixed P and different 7, using the above algorithm
is theoretically more efficient than using higher-order model checking [9].

The rest of the paper is structured as follows. Section 2 defines higher-order
grammars and the languages generated by grammars. Section 3 describes the

! The order-2 word languages are known to be context-sensitive. The result follows
from context-sensitiveness of safe word languages [6] and the equivalence of safe and
unsafe word languages for the order-2 case [1].

type-based grammar transformation that removes certain rewriting rules. Sec-
tion 4 focuses on order-2 grammars and shows that after the grammar trans-
formation, the size of intermediate terms is linearly bounded by the size of the
produced tree. Section 5 discusses related work and Section 6 concludes. For
the space limitation, we omit some details and proofs, which are found in an
extended version of this paper, available from the first author’s web page.

2 Preliminaries

This section defines higher-order grammars and the languages generated by
them. When f is a map, we write dom(f) and codom(f) for the domain and
codomain of f.

Definition 1 (types). The set of simple types, ranged over by k, is defined
by: k ::= o | k1 = ka. The order and arity of a simple type K, written order(k)
and ar(k), are defined by:

order(o) =0 order(k; — kg) = max(order(xi) + 1, order(kz))
ar(o) =0 ar(k1 — k2) = 1+ ar(ke)

Intuitively, o is the type of trees. We assume a ranked alphabet X', which is a
map from a finite set of symbols (called terminals) to their arities. We use each
terminal a as a tree constructor of arity X'(a). We assume a finite set of symbols
called non-terminals, ranged over by A.

Definition 2 (A-terms). The set of A-terms, ranged over by t, is defined by:
tu=a|Alal|tita| Ax:kt. A termt is called an applicative term (or simply
a term) if it does not contain \-abstractions.

We often omit the type annotation and just write Az.t for Az : x.t. We consider
only well-typed terms; the type judgment relation I Fsr ¢ : k (where non-
terminals are treated as variables) is defined inductively by:

K+ 10— =0 —
KU{z:k}bsra:k sTar 2 8o

X(a)
Klgrti kg = K K Fgrto: ko KU{z:kr1}bsrt: ke
IC"STtthZI'i ICI—ST/\x:m.t:m—H@

We call ¢ a (finite, X-ranked) tree if ¢ consists of only terminals and appli-
cations, and @) g1 ¢ : 0 holds. We write Trees for the set of X-ranked trees, and
use the meta-variable 7 for a tree.

Definition 3 (higher-order grammar). A higher-order grammar (called
simply a grammar) is a quadruple (X, N, R,S), where (i) X is a ranked alpha-
bet; (ii) N is a map from a finite set of non-terminals to their types; (111) R is
a finite set of rewriting rules of the form Axy --- xy — t, where A € dom(N)

and t is an applicative term. We require that N'(A) must be of the form k1 —
= kg = o and N,x1:K1,...,@p: ke Fgr t 2 o must hold. () S is a non-
terminal called the start symbol, and N (S) = o. The order (arity, resp.) of
a grammar G, written order(G) (ar(G), resp.), is the largest order (arity, resp.)
of the types of non-terminals. We sometimes write Xg,Ng, Rg, Sg for the four
components of G.
For a grammar G = (X, N, R, S), the rewriting relation —¢ 1is defined by:

Az -z >tER t; —g t] ie{l,....,k} Y(a)=k
Aty -ty —g [t1/x1, .tk /xRt aty -ty —g aty - tim1 titipr ot

Here, [t1/x1,...,tg/xi]t is the term obtained by substituting t; for the free oc-
currences of x; in t. We write — for the reflexive transitive closure of —g.

The tree language generated by G, written L(G), is the set {w € Trees, |
S —& m}. When the arity of every symbol in X is at most 1, the word lan-
guage generated by G is {a1---an | a1(---(ane)---) € L(G)}. The leaf lan-
guage generated by G, written Lieas(G), is the set: {leaves(w) | S —& 7 €
Trees, }, where leaves(r) is the sequence of symbols in the leaves of m, defined
inductively by: leaves(a) = a, and leaves(am m2) = leaves(w)leaves(na). The
order of a tree language is the smallest order of a grammar that generates
the language.

A grammar is safe if for the type k1 — --- — -+ — Ky — 0 of each term t,
(i) order(k1) > - -+ > order(k¢) holds, and (ii) if order(k;) = order(k;t1), the
i-th and (i+1)-th arguments of t are passed always together. Grammars without
the safety restriction are sometimes called unsafe, to emphasize the fact that
there is no safety restriction. (Thus, the set of unsafe grammars include safe
grammars.) A language is called safe if it is generated by some safe grammar.

In the rest of this paper, we assume that every terminal has arity 0 or 2. This
does not lose generality, because every tree can be represented by a corresponding
binary tree with linear size increase.

Ezample 1. Consider the order-2 grammar Gy = ({a:2,b:2,e:0},{S:0, F: (0 —
o) +0—=>0,C:(0>0—+0)—=(0—>0—=0)—=0—>0T:(0—>0) —>0—
0}, R,S) where R consists of the rules:

S — F(Cab)e Fgz— gz, Fgz—F(Tg)x
Cghr—gxx Cghx — hzx Tgx— g(gz).

Then, the following is a possible reduction sequence:

S — F(Cab)e — F(T'(Cab))e — T (Cab)e
— (Cab)(Cabe) —> a(Cabe)(Cabe) —* a(bee)(ace).

L(Go) is the set of perfect finite trees of height 2™ (where all the leaves have the
same depth). Lieas(Go) = {e22 | n > 0}.

Ezample 2. Consider the grammar G; = ({£:2,g:2,2:0,b:0,e:0}, {S:0, F: (0 —
o) 20—0—0,G:0—0,H:0—0},R,S) where R counsists of:

S— FGab Foxy—f(F(Fox)y(Hy))(f(py)x) Fory—e
Gx —gxe Hzr—gex.

This has been obtained from the grammar conjectured to be inherently unsafe
([8], p-213), by adding the rule 'z y — e (so that the grammar generates a set
of finite trees, instead of an infinite tree) and encoding unary tree constructors
g and h in their grammar as G and H (so that h(r) and g(m) are represented by
gen and g’ e respectively). The following is a possible reduction sequence:

S — FGab— £f(F(FGa)b(Hb))(f (Gb)a) — fe(f(GDb)a)
— fe(f(gbe)a).

3 Type-Based Grammar Transformation

As mentioned in Section 1, a key idea of our proof is to first transform a grammar
to an equivalent grammar, so that the size of intermediate terms in a production
sequence of tree 7 is linearly bound by the size of w. Note that the size of
intermediate terms is not bounded for arbitrary grammars. For example, for
the rewriting rules {S — Fe,Fz — e, Fx — F(Fz)}, an arbitrarily large
intermediate term F™ e may occur in a production of e. As another example,
replace the rule Fax — e above with F'ox — xz. Again, an arbitrarily large
intermediate term F™ e may occur in a production of e.

The problems above are attributed to the rules F'x — e and F x — x, which
respectively allow F' to ignore arguments and to behave like an identity function.
This section formalizes a type-based transformation that can remove such “non-
productive” behaviors of non-terminals. A complication arises because (i) the
grammars must actually be extended to enable such transformation, and (ii) the
kinds of non-productive behaviors that should be removed depends on the order
of grammars (more need to be eliminated with the increase of the order) and
we have not yet obtained a general characterization of non-productive behaviors.
We thus first present extended grammars in Section 3.1, and formalize the trans-
formation by parametrizing it with a set of prohibited behaviors in Section 3.2.
In the next section, we provide a sufficient characterization of prohibited behav-
iors for the order-2 case, and show that the removal of those behaviors indeed
guarantee that the size of intermediate terms is linearly bounded by a generated
tree.

3.1 Extended Grammars

This section introduces extended grammars, which are used as the target of the
transformation.

Definition 4 (extended terms). The set of extended terms, ranged over by
e, is defined by:

ex=alx|A|leE|{(/)F E:={e,...,ex} fuo=el|Xr:k.f

Here, A ranges over non-terminals, and k > 0 in {ey,...,ex}. We require that
fin (f) contains no non-terminals, terminals, nor free variables.

Intuitively, e{eq,...,ex} applies the function e to the argument {ei,...,ex},
which non-deterministically evaluate to e; for some ¢; however, e must use each
€1,...,er at least once. Thus, if we have a rule Az — ax x, then A {ej, ea} may
be reduced to aej e3 or aes e; but not to ae; e;. We often write ee; for e {e; }.
The term (f) is semantically the same as the (extended) A-term f. Note that
(f) cannot occur in an argument position; for example, A (Az.x) is disallowed.
(To save the number of rules, however, we allow e to be instantiated to (f) in
the definitions of the type judgment and substitutions below.) We later restrict
the set of terms f that may occur in the form of (f).
The type judgment relation I Fg e: k is defined inductively by:

{z:k}Fpa:r Aintipdn Orpaigo-So—o
2(a)

{z1:K1,...,2p Kkt FEe: o

Fe (Azy i Kk1.- - Axp i Kg.€) ik — -+ = K — 0

Kiktgel:ky =k Ko kg Ey: ko KiFge; :xforeachi el
]C1U’C2|—E€1E22K UieI’Cil—E‘{ei|i€I}ZI€

Please notice that weakening is not allowed in the above rules. Therefore, if
K Fg e : Kk, then every variable in IC must occur at least once in e.

Definition 5 (extended grammars). A combinator is an extended \-term
f such that O Fg f : & for some k. Let C be a finite set of combinators. An
extended grammar over C is a quadruple (X, N, R, S), where: (i) X is a ranked
alphabet; (i) N is a map from a finite set of non-terminals to their types; (iit) R
s a finite set of extended rewriting rules of the form Axy --- xy — e, where
A € dom(N), and f € C for every (f) in e. We require that N'(A) must be of
the form k1 — -+ = kg = o and T'U{x1 :Ky,...,2¢: Ke} FE e: o must hold for
some I' C N. Furthermore, A\x1.---Axg.e € C, and e must not contain a subterm
of the form (Axy---x.€')Ey -+ Eg. (iv) S is a non-terminal called the start
symbol, and N'(S) = o. As before, the order and arity of G, written order(G)
and ar(G), are the largest order and arity of the types of non-terminals.

To define the rewriting relation for extended grammars, we need to extend
the ordinary notion of substitutions. An (extended) substitution is a map from
variables to sets of terms. We write [Ey/x1, ..., E /x| for the substitution that

maps z; to E;, and use the meta-variable §. The operation [E/x]e replaces each
occurrence of z in e with an element of F in a non-deterministic manner. Thus,
we define the substitution operation as a relation § = e ~» ¢/, which means
that e’ is the term obtained by applying the substitution 6 to e. The relations
e~ e and 0 = E ~~ E’ are defined inductively by:

TFawe [FA=4 [FNH~h HHadFe—e
01 ': €1 6/1
92 E2 ~ El
0. U0, Eel i erfl o0 Uierjes, 0 Eleili €I}~ {eij i€l je Ji}
Here, the operation 6y U 6; on substitutions is defined by: (i) dom(6yU6;) =
dom(0o) U dom(61); (i) (6o U 01)(x) = Op(x) U b1 (x) if © € dom(0p) N dom(61),
and (iii) (6o U 61)(z) = 6;(z) if z € dom(0;) \ dom(61—_;).

Ezample 3. Let = [{b,c}/z] and e = axzx. Then § |=e ~» abc and 0 e ~
acb hold, but neither 6 = e ~» abb nor 6 |= e ~» acc does.

GM }: €; ~ €4 j for each i € I.jeJ;

For G = (X,N,R,S), the rewriting relation —¢g on terms is defined by:

Axy - x> e €R
[E1 /2 . E:/xk] Ee~e B[z, Eifar] = e~
(Axy---xp.e)Ey - By —g e

DY /
ARy By —ge (ER-CoOMB)

(ER-NT)

e; —g €} ie{l,...,X(a)}
a{ei} - {es@} —g afer} -~ {eia} {ei {eir} - {ex)}

We often omit the subscript G. The tree language generated by an ex-
tended grammar G, written £(G), is the set {7 € Treex, | S — 7} (where
we identify a singleton set {e} with e; for example, the extended term a {e} {e}
is interpreted as the tree aee).

(ER-Cona)

Ezample 4. Consider the extended grammar Go = ({a:2,b:0,c:0},{S:0,F:0 —
0}, R,S) where R ={S — F{b,c}, Fx — a{F {z} {F {z}}, F v — z}, then:

S — F{b,c} — a(F{b}) (F{b,c}) —" ab(a(F{c}) (F{b})) —" ab(ach).
L(G2) is the set of all binary trees that contain at least one b and one c.

Reduction with Eager Normalization. We define e — €’ inductively by: (i)
e — € if e —¢ €’ is derivable by using rule ER-CoMB, (ii) eE —) ¢'E
if e —y € (iil) eg (E W {e}) —a eg (EU{e1,...,ex}) if e — e; for each
ie{l,...,k} with k > 1; (iv) (Az.e)E — €' if [E/x] E e~ €5 (v) Az.e —),
Ax.e' if e —y €5 and (vi) (f1)((fo) E) —A (HE if Mx.fi(fax) —N f € C.
In the above definition, we have extended the syntax of extended terms and
allowed A-abstractions to occur outside (-), but ordinary extended terms are
closed under — . In e —» €/, we implicitly require that every argument of a
terminal symbol must be a singleton set both in e and ¢€’.

Henceforth, we assume that the set C is closed under composition, in the
sense that if f1, fo € C and Az.f1(fox) —3 e, then e —} f for some f € C.
We write e |y € if e —3 €’ /=, and write e =g €’ if e({x- —g -la)€e’. For
every term e of type o and tree 7, e —¢ 7 if and only if e =7 7. In Section 4,
we bound the size of intermediate terms in a rewriting sequence S =5 7.

3.2 From Grammars to Extended Grammars

This section presents a translation from (ordinary) grammars to extended gram-
mars over a finite set C of combinators, and shows that the translation preserves
the tree language. We use type-based transformation techniques to eliminate use-
less arguments and (non-applied) combinators in C.

Definition 6 (intersection types). The set of intersection types over C,
ranged over by T, is given by:

Tu=ol(01 = =0k —o0,n) ou=Nm,....n} n (flag) ==nc|(f)
Here, f ranges over C. We define flag(t) by flag(o) = nc and flag(oy — -+ —
oK = 0,1m) =1.

We often write 71 A -+ A7 and T for A{m,..., 7} and A respectively. We
assume a certain total order < on the intersection types. Intuitively, the type
o describes trees. The type A{m1,...,7¢} describes terms that behave like a
value of type 7; for every i € {1,...,¢}. The type (61 — -+ — o — 0,7n)
describes functions that take arguments of types o1,...,0, and return a tree
of type o. The flag n describes how the term behaves after the transformation
for removing unused arguments. If 7 = (f), then the term behaves like f after
the transformation, and if = nc, the term does not behave like any of the
combinators in C. For example, the term A\z.Ay.y has type (T — o — o, (Ay.y)),
because after removing the redundant argument z, the term behaves like the
identity function Ay.y.

We consider only types that respect underlying sorts. The operation [-] given
below maps an intersection type to the simple type obtained by the grammar
transformation.

[G—oml=[F—>o0] [o]=o
I, 1,y =0 = o] =[] — - = [re] — [6 — o]
if flag(;) # nc and flag(r;) = nc and j < j' implies 7; < 7j/

Here, ¢ — o is an abbreviation of o; — -+ — o — o. The type 7 is called a

refinement of k, if 7 :: k is derivable by the following rules.
o; ky; for each i € {1,...,k} D= (f)y:[(@— o, f)]

0:0 (@—=o0,{(f))=k—o0
7,k foreach i € {1,...,k} o; =k for each i € {1,...,k}
AN, 7}k (0 > o,nc):k—o

Henceforth we consider only intersection types that are refinement of some simple
types. For example, intersection types like A{o,(0 — o,nc)} — o and (o —
o, (Af.A\x.f(x))) are excluded out.

Transformation rules. We define the term transformation relation I' -t : 7 =
e, where: (i) I" is an (intersection) type environment, i.e., a set of type bindings
of the form {zy1 :71,..., 2z : 7%}, where each variable may occur more than once
(we often omit curly brackets and just write 1 : 71, ...,2% : 7%); (i) ¢ is a term;
(iii) 7 is the type of ¢; and (iv) e is an extended term. When o = A{r,..., 7%},
we sometimes write x : o for = :7y,...,x : 7. Intuitively, I' F ¢t : 7 = e means
that the term ¢ corresponds to e, when ¢ behaves as specified by 7. For example,
if I' ={g: (0 = o,(A\x.z))}, then I" - ge : 7 = (Az.x)e should hold, since I"
says that g will be transformed to a term that behaves like Az.x.

The transformation relation is inductively defined by the following rules:

flag(T) = (f) flag(T) = nc

X-VARC X-VAR
z:Thx:T=(f) () x:ThT:iT= 2, ()
(X-T) flag(T) = nc
: LA X-NT
D-a (o—>()—>o—>o,nc):a IFA S A ()
X(a
Axy - xp,—teR f=AVars({z1:01,...,2: 0k}, 21 -x1).e €C
T=(01—= =0 —0,{f)) T1:01,...,T, .0 -t:0=¢e
DEA:7=(f)
(X-NTC)
) , _Jn itk=0
Iokto: (N{m,-..,7e} = p,n) = eo n{ncifk>0

bt :m = E; flag(m;) =nc fori € {1,... k} n<tifi<j<k
Iiktiim=e; flag(7;) #ncfori € {k+1,...,¢}

ToUUieqr, oy i Ftota s (pon) = e By -+ By

(X-APP)

'tt:7m= (Axy. - Axg.eo) B1 -+ Eg [E1/x1,...,Ex/zi] Eeg~e
I'Ft:T=e¢

(X-RED)

Iikt:7=e¢; foreachie{1,... k} k>1
nu---Ulykt:7={ey,...,ex}

(X-SET)

In the rule X-NTC above, Vars(I',z) (where T is a possibly empty sequence of
variables) is a sequence of type bindings defined by (recall that < is the total
order on intersection types):

Vars(Ie) = ¢ Vars(I',zy) = (7, : [11]) - - (@7, : [7x]) Vars(L,y)
where {71,...,7%} ={7|z:7 €I flag(r) =nc}and 1y < -+ < 7.

Here is some explanation of the transformation rules. The rule X-VARC
ensures that if z behaves like f, then z is replaced with (f); this allows us to
propagate information about elements of C during the transformation, and avoid

passing them around as function arguments. The rule X-VAR says that if x does
not behave like an element of C, then the variable is replicated for each type 7.
(Here, we assume that z, and 2/, are different variables if x # 2’ or 7 # 7'.)
Similarly, there are two rules for non-terminals, depending on whether the body
of a rule behaves like an element of C. The rule X-APP is for applications.
We ensure that only terms with nc flags remain as arguments, so that terms
behaving like elements of C are not passed around. Each argument is now a set
of terms; this is because the output of transformation may not be unique. For
example, if F' has both types (0 - T — o,nc) and (T — o — o,nc) (which
means that F' may use either the first or second argument), then Fbc in an
argument position would be replaced by {F(o—T—o.nc) b, F(T—0—0nc) C}-

For a grammar G = (X, M, R,S) and an extended one G’ = (X, N, R, S,),
we write - G = G" if (i) N/ ={F, — [r] | 7 = MN(F)} and (ii) R’ is the set:

{F(Ul—%n—)a'k—m,nc) Y =" Ym — € ‘

(Fxy - ap—>t) ERANZy:01,...,xp 0, Ft:0o=e

AVars({z1:01,..., 2k 0}, 21 2k) = (Y1 : K1) -+ (Ym : Km)

Noy == o —=omne) c N(F)AMy1L K1 Ay s km.e €C N e /=)
So far we have implicitly assumed the set C is fixed when we write I' ¢ :7 = e

and -G = G'. We write ' F¢e t : 7 = e and ¢ G = G’ if we wish to make the
set C explicit.

Ezample 5. Recall Gy in Example 1. Let C = {Ag.A\z.g z, A\g.A\z.g x z}. By apply-
ing the transformation and removing redundant rules, we obtain the grammar
G, =(X,N",R",S,), where f = A\g.\z.gxx and 7 = ((0 — o,nc) — o — o, nc)
with:
N' ={S,:0,F;:(0 0) —>0—0,T,:(0—0)—0—o0}
R ={S, > aee, S, —>bee, S,— F {(f)a}e,
So = Fr {(f)b}e, So— F-{(f)a (f)b}e,
Frge—Trgx, Frgx— F.(T,9)x, Trgx— g(gx)}.

The tree a(bee) (aee) is obtained as follows. (We omit the subscripts of non-
terminals, as they happen to be the same for each original non-terminal.)

S— F{(f)a,(f)pte —T{(f)a,(f)ble — (f)a{(f)ae, (f) be}
—a((f)be)({f)ae) —* a(bee)(ace).

The following theorem states that the transformation preserves the language.

Theorem 1. If G is an order-n grammar and = G = G', then G' is a wvalid
order-n extended grammar and L(G) = L(G").

4 Bounding the Size of Intermediate Terms
In this section, we restrict the order of grammars to 2, and let C be the following
set Cpn:

{\z:o0.2}U
{Ay1-yryi Br - Eo |k, <m,and EyU---UEy ={y1,...,yxt \ {yi}}.

We shall show that for an extended order-2 grammar over C, the size of inter-
mediate terms occurring in a production of a tree 7 is linearly bounded by the
size of 7. The size |e| of an extended term e is defined by:

ol = Jo] = 4] =1
|6{61,...,€k}| = |€|—|—|€1|+"'+|€k‘ ‘<f>{€1,...,ek}‘ =1—|—|61‘+"'+|6k|.

Here, ey, ..., e are different from each other. The size || of a tree 7 is the size
of m as an extended term, which is the same as the number of nodes and leaves
of . The property mentioned above is stated more formally as follows.

Theorem 2. Let G = (X, N,R,S) be an order-2 extended grammar over Cp,
with ar(G) < m. Then there exists an (effectively computable) constant ¢ such
that for every tree m € Trees, if So = e ==§/ 7, then |e| < c|n|.

The following main result of this paper is obtained as a corollary:

?
Corollary 1. Fix an order-2 grammar G, Then the membership problem m €
L(G) can be decided in a non-deterministic Turing machine in O(|7|) space.

Proof. Suppose ar(G) = k" and k = max(k’,2). We first determine m of C,,. For
each order-1 type x of arity k, the number of intersection types such that 7:: k
and flag(t) = nc is 2%. Thus, for each order-2 type kK = k1 — -++ — K; — 0
(with j < k), the arity of [o] for o such that o :: k is at most k x 2F. Let
m =k x 2¥ and C = C,,. By Theorem 1, we can effectively construct an order-2
extended grammar G’ over C,, such that £(G) = £(G’). By the above reasoning,
ar(G’) < m. Compute the constant ¢ of Theorem 2. Since G is fixed, those
steps can be performed offline. Given 7, one can non-deterministically apply
reductions by =>¢ either until 7 is obtained (and answer yes only in this case),
the size of a term exceeds c|r|, or the reduction gets stuck. By Theorem 2, there
is an execution sequence that outputs yes if and only if # € £(G'). Since G
is fixed (therefore non-terminals, terminals, and C,, are also fixed), the actual
space required for storing each intermediate term e is also linearly bounded
by |e| < ¢|x|; hence this computation can be simulated by a non-deterministic
Turing machine with O(|7|) space. O

We sketch the proof of Theorem 2 in the rest of this section. We call a A-term
of the form Awzi.--- Azy.29(1)Zg(2) - - - Tor) (Where k > 1 and 6 is a permutation
on {1,...,k}) an extended permutator. The proof consists of two steps. In
the first step, from the reduction sequence e =g m, we construct a term M of
the linear A-calculus that simulates the behavior of e in e == 7, such that |e]
is bounded by the measure asize(M) defined below (which is the number of top-
level abstractions and variables), and M contains extended permutators only in
restricted positions. In the second step, we show that any linear A-term M that
satisfies the conditions above is linearly bounded by |r|. For space restriction,
we discuss only the first step below. Details about the first step and the second
step are found in the extended version.

We first define a translation from extended grammars to linear A-calculus
with product types.

Definition 7. The set of linear types, ranged over by v, is given by:

yu=o|yX-- Xy

We assume a total order < on linear types. The refinement relation v :: k on
types is defined by:
M, k1 foreach i€ {1,...,k} Yo it Ko 1< <yig
0::0 (M1 X - XYk = Y2) it (K1 — K2)

Henceforth we consider only types v such that 7 :: k for some k.

Definition 8. The set of linear A-terms, ranged over by u, is given by:
wu=a | ul | Moy :y1, .., Tk V) U U= (uy,...,ux)

A linear \-term u is called a pure linear A-term if the size of every tuple in
wisl (i.e., k=1 for every subterm of the form A(xz1,...,zk).u" or (u1,. .., ug)
and every type y1 X -+ X v — 7). We define asize(u) by:

asize(x) = asize(A(z1,...,Tk)u) =1
asize(ug(uy, ..., ug)) = asize(ug) + asize(uy) + - - - + asize(ug).

We use a meta-variable M for pure linear A-terms. We often omit parentheses
for unary tuples, and write Az.u for A(z).u, and u for (u).
The type judgment relation Ak u : v for linear A-terms is given by:
Aw{xy iy, .., xp Yk Fruy
{zivtbra:y AL AT, T)uw sy X oo X Y =y

AgFrug:yy X Xy — A;Fpu; iy foreach i € {1,...,k}
Ag W WAL Fpoug(ug, ..., ug)

Here, Ag W A; is defined to be Ag U Ay only if dom(Ag) N dom(A;) = 0.
The transformation relations CFe: k= u:vy4Aand KCFE : k= U :
Y1 X + -+ X v 1 A are defined by the rules below.

7 fresh

fFa:o—---—0—=0=>aD:0=---s0—=04aP:0—---- =500
— — ———

X(a) X(a) X(a)
(LX-CoNsT)
1 fresh YK
: i OFfir=u:y-0
{z:k}Fain=20:y 420y I — (LX-Com)
(LX-V) () ir=>u:y0
DAy Aage:k=u:y1A Fzy -2y —>eeR (LX-NT)

PFF:k=u:yv4A

Kibei:k=u;:v 44 foreachie {1,...,0} <<y
KiU-—-UKeH{er,...,ee} o= (g, up) iyr X oo Xy 1AW WA

(LX-TSsET)
KobFeg:ho—=>Kk=ug:v1 X Xy —v14
KiFE:kg=U:mp X xy 1A
1 Ko 71 Yk 1 (LX-APP)
’C0UK1|—60EI/€:>UOU:’}/—|A0&JA1
Ku{z:kolbFe:n=u:ya4Az0) ... 200,
<ol < dom(K
Nn<<y oz g dom(K) (LX-AB)

KEXze:rg = k= Nz 20 u:iy x- xy = yHA

The idea is to replicate each variable and terminal for each use in a rewriting
sequence e —¢ 7. In rule LX-CONST, a obtained by the translation is treated
as a variable. In LX-NT, a non-terminal is (non-deterministically) expanded,
and then transformed to a linear A-term. In LX-TSET, we allow e; = e; even if

i

Ezample 6. Recall G{j in Example 5. The term T {(f)a, (f)b} {e} occurring in
the production of a(bee) (aee) is transformed to:

A, 9@, g®) A @D, 2), 2O 20 g (42 (21, £®), (43 (£3), x(4>)))>
(Ag Ay, y@).g(yD, y@))a®, (Ag.AMyD,y@).g(yD,y?))p®),

(gAY, y@).g(yM, y@))a(s))
(6(1)76(2),6()’6(4))

with A = a(®: 0—0— o0, b 0—0—o0, a®: 10 —>0—o0, e o, e®: o, e®):
0,6 : 0. Here we have reused labels (for i in LX-V) when there is no danger
of variable confusion.

The transformation satisfies the following property.

Theorem 3. If e —¢§ 7, then there exists u such that) Fe:0=u:0+4A
where for each terminal symbol a, the number of bindings of the form a® in A
is the same as the number of occurrences of a in .

We can obtain the following property from the above theorem.

Theorem 4. Let G be an order-2 extended grammar over C,, with ar(G) < m.
If S = e = m, then there exists a pure linear \-term M that satisfies:
(i) Abr M : o; (ii) codom(A) C {o,0 — o — o} and |{z | A(z) = o}| equals
the number of leaves of 7; (i) asize(M) > le|; (iv) M contains only top-level
B-redexes; and (v) M does not contain any extended permutator in an argument
position, nor any consecutive application of ertended permutators.

Proof Sketch. Since e =g m, we also have e —§ m. Thus, one can construct a
term u that satisfies the condition of Theorem 3. Let M be the pure linear A-term
obtained from u by applying the currying transformation, and then normalizing
all the redexes under A-abstraction. Then M satisfies the required conditions. (I

In the second step, we show that asize(M) < 28|{z | z:0 € A}| holds for
any pure linear A\-term M and type environment A that satisfy the conditions
(i), (ii), (iv), and (v), from which Theorem 2 follows.

5 Related Work

As mentioned in Section 1, higher-order (formal) languages have been intro-
duced in 1970’s and actively studied since then, but a number of problems re-
main open especially about unsafe higher-order languages. Inaba and Maneth [6]
proved that any safe higher-order (word) languages are context-sensitive; they
actually proved the stronger result that the membership is in the intersection of
deterministic linear space and NP. Context-sensitiveness of unsafe higher-order
languages has been open (for order-2 or higher for the tree language case, and
for order-3 or higher for the word language case).

Type-based techniques for reasoning about higher-order grammars have been
recently applied to obtain simpler proofs for the decidability of higher-order (lo-
cal) model checking [9, 12], and the strictness of tree hierarchy [10]. Haddad [4]
developed a type-based transformation to eliminate non-productive OI deriva-
tions in deterministic higher-order tree grammars. He has also recently devel-
oped a type-based method for logical reflection and selection (which is a kind
of grammar transformation) [5]. There is some similarity between the resource
A-calculus [18] and extended terms. In the resource A-calculus, a function may
be applied to a multiset consisting of linear terms (which must be used ezactly
once) and reusable terms (which may be used an arbitrary number of times). In
our extended terms, each element of a set must be used at least once.

6 Conclusion

We have shown that order-2 unsafe tree languages are context-sensitive, by using
novel type-based grammar transformation. It is not yet clear whether this ap-
proach can be extended to show context-sensitiveness of languages of arbitrary
orders. For the general case, we need to find an appropriate set C of combinators,
and generalize the arguments in Section 4, which are currently specific to the
order-2 case. We expect that the grammar transformation in Section 3 is also
useful for reasoning about other properties of higher-order languages, such as
pumping lemmas for higher-order languages.

Acknowledgments. We thank anonymous reviewers for useful comments. This
work was partially supported by JSPS KAKENHI 23220001 and the Mitsubishi
Foundation.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Aehlig, K., de Miranda, J.G., Ong, C.-H.L.: Safety is not a restriction at level 2 for

string languages. In: Proceedings of FoSSaCS 2005. LNCS, vol. 3441, pp. 490-504.
Springer (2005)

Curry, H.B., Feys, R.: Combinatory Logic, vol. 1. North-Holland (1958)

Damm, W.: The IO- and OI-hierarchies. Theor. Comput. Sci. 20, 95-207 (1982)
Haddad, A.: IO vs OI in higher-order recursion schemes. In: Proceedings of FICS
2012. EPTCS, vol. 77, pp. 23-30 (2012)

Haddad, A.: Model checking and functional program transformations. In: Proceed-
ings of FSTTCS 2013. LIPIcs, vol. 24, pp. 115-126 (2013)

. Inaba, K., Maneth, S.: The complexity of tree transducer output languages. In:

Proceedings of FSTTCS 2008. LIPIcs, vol. 2, pp. 244-255 (2008)

Kartzow, A., Parys, P.: Strictness of the collapsible pushdown hierarchy. In: Pro-
ceedings of MFCS 2012. LNCS, vol. 7464, pp. 566-577. Springer (2012)

Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In:
Proceedings of FoSSaCS 2002. LNCS, vol. 2303, pp. 205-222. Springer (2002)
Kobayashi, N.: Model checking higher-order programs. Journal of the ACM 60(3)
(2013)

Kobayashi, N.: Pumping by typing. In: Proceedings of LICS 2013. pp. 398-407.
IEEE Computer Society (2013)

Kobayashi, N.; Inaba, K., Tsukada, T.: On unsafe tree and leaf languages. In
preparation (2014)

Kobayashi, N., Ong, C.-H.L.: A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In: Proceedings of LICS 2009.
pp. 179-188. IEEE Computer Society (2009)

Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proceedings of PLDI 2011. pp. 222-233 (2011)

Kobele, G.M., Salvati, S.: The IO and OI hierarchies revisited. In: Proceedings of
ICALP 2013. LNCS, vol. 7966, pp. 336—348. Springer (2013)

Maslov, A.N.: The hierarchy of indexed languages of an arbitrary level. Soviet
Math. Dokl. 15, 1170-1174 (1974)

Ong, C.-H.L.: On model-checking trees generated by higher-order recursion
schemes. In: Proceedings of LICS 2006. pp. 81-90. IEEE Computer Society (2006)
Ong, C.-H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching
algebraic data types. In: Proceedings of POPL 2011. pp. 587-598 (2011)

Pagani, M., Rocca, S.R.D.: Solvability in resource lambda-calculus. In: Proceedings
of FOSSACS 2010. LNCS, vol. 6014, pp. 358-373. Springer (2010)

Turner, R.: An infinite hierarchy of term languages - an approach to mathematical
complexity. In: Proceedings of ICALP. pp. 593-608 (1972)

Wand, M.: An algebraic formulation of the Chomsky hierarchy. In: Category The-
ory Applied to Computation and Control. LNCS, vol. 25, pp. 209-213. Springer
(1974)

