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Abstract
Macro tree transducers are a simple yet expressive formal model
for XML transformation languages. The power of this model comes
from its accumulating parameters, which allow to carry around sev-
eral output tree fragments in addition to the input tree. However,
while each procedure is enabled by this facility to propagate in-
termediate results in a top-down direction, it still cannot do it in a
bottom-up direction since it is restricted to return only a single tree
and such tree cannot be decomposed once created. In this paper, we
introducemulti-return macro tree transducers as a mild extension
of macro tree transducers with the capability of each procedure to
return more than one tree at the same time, thus attaining symme-
try between top-down and bottom-up propagation of information.
We illustrate the usefulness of this capability for writing practically
meaningful transformations. Our main technical contributions con-
sists of two formal comparisons of the expressivenesses of macro
tree transducers and its multi-return extension: (1) in the determin-
istic case, the expressive powers of these two coincide (2) in the
nondeterministic case (with the call-by-value evaluation strategy)
multi-return macro tree transducers arestrictly more expressive.

1. Introduction
The emergence of XML has invoked an active body of research of
the formal study of tree transformation models. Among these, the
tree transducer family has drawn much attention since it is expres-
sive enough to represent a wide range of practical transformations,
yet simple enough to ensure various desirable properties such as
exact typechecking, evaluation complexity bounds, composability,
streaming, and so on [2, 4, 7, 12, 15, 3, 14, 10, 13, 16, 11, 6]. A par-
ticularly important model is themacro tree transducer(MTT) [4,
7]. MTTs are a finite-state machine model to transform a tree where
each state (or a procedure in programming language terminology)
is allowed to pass several extra arguments (calledaccumulating pa-
rameters) in addition to the input tree. This facility to carry around
multiple intermediate results is proved to be useful for various pur-
poses and indeed increase the expressive power compare to top-
down tree transducers lacking this facility [4]. However, MTTs
have the asymmetry that, while each state can propagate multiple
trees in a top-down manner, it cannot do it in a bottom-up manner
since it is still restricted to return only a single tree and such tree
cannot be decomposed once created.
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This paper introduces a mild extension of MTTs calledmulti-
return macro tree transducers(mr-MTT) where each state is en-
dowed the capability of returning more than one tree. We will see
below that this addition is indeed useful in writing concise pro-
grams for practically meaningful transformations that need a longer
and more cumbersome description in conventional MTTs. How-
ever, beyond this informal argument, one would naturally ask: how
are the expressivenesses different between MTTs and mr-MTTs in
principle? Our main contributions in this paper give affirmative an-
swers to this question in two cases:

1. In the deterministic case, these two are equally expressive.

2. In the nondeterministic case with the call-by-value semantics,
mr-MTTs are strictly more expressive than MTTs.

Multi-return macro tree transducers Let us informally introduce
MTTs and mr-MTTs to illustrate how the multi-return capability is
useful. First, MTTs can be seen as a simple functional language
where the procedures can be defined only by induction on the first
argument. The following shows an MTT expressing a transforma-
tion that takes a tree consisting of binary (a andb) and leaf (e)
nodes and returns anr node holding two lists. The first list consists
of item nodes each of which contains the first subtree of ana node
appearing in the input tree; the second list is similar but collects the
first subtrees of theb nodes.

〈main, x〉() →r(〈geta, x〉(e), 〈getb, x〉(e))
〈geta, a(x1, x2)〉(y) →item(〈copy, x1〉(),

〈geta, x1〉(〈geta, x2〉(y)))

〈geta, b(x1, x2)〉(y) →〈geta, x1〉(〈geta, x2〉(y))

〈geta, e〉(y) →y

〈getb, a(x1, x2)〉(y) →〈getb, x1〉(〈getb, x2〉(y))

〈getb, b(x1, x2)〉(y) →item(〈copy, x1〉(),
〈getb, x1〉(〈getb, x2〉(y)))

〈getb, e〉(y) →y

〈copy, a(x1, x2)〉() →a(〈copy, x1〉(), 〈copy, x2〉())
〈copy, b(x1, x2)〉() →b(〈copy, x1〉(), 〈copy, x2〉())

〈copy, e〉() →e

We use the form〈f, t〉(t1, . . . , tn) for procedure definitions and
calls wheret is the first argument (the recursion argument, i.e.,
the input tree) andt1, . . . , tn the remainder (i.e., the accumulating
parameters). We adopt this notation to emphasize the special role of
the first argument. The proceduregeta is intended to collect all the
first subtrees ofa nodes in the input tree. This procedure takes an
extra parameter for holding the first subtrees ofa nodes that have
been collected so far. Each rule works as follows. If the input tree
is ana node, we recursively callgeta on the subtreesx2 andx1 to
yield the result from these subtrees combined with the collections
of the passed parametery; we then augment the collection, in an



item node, with the first subtreex1 (more precisely, its copy via
the copy procedure defined in the bottom; MTTs have no way to
directly return the input tree) to yield an answer to the original call.
The second rule forgeta on ab node is similar except that we do
not construct anitem node. In the case that the input is a leaf, we
directly return the passed accumulating parameter. The procedure
getb is analogous.

The above MTT traverses the input tree twice, once for collect-
ing the first subtrees ofa’s and another for collecting those ofb’s.
It is not possible to combine the traversals to a single one since,
as stated above, procedures in MTTs cannot return multiple sepa-
rate trees simultaneously. We may attempt to combine the two lists
of a’s andb’s in a temporary node and return it, as in the usual
practice of functional programming. But then, we cannot add later
morea’s or b’s to the appropriate list since we cannot decompose
the temporary node back to the two list (otherwise the procedures
would not be defined by induction on the first argument). This re-
striction is rather awkward. For example, if the two traversals have
a common complex condition, then separating the procedures for
these traversals may require us to duplicate the same code for the
condition.

It is thus natural to extend MTTs with the capability to return
multiple return values. More precisely, our extension is to allow a
procedure to return a tuple of trees and the elements of such a tuple
to be bound to variables by a let construct (immediately after the
return). The following expresses the same transformation as above
by an mr-MTT (eliding thecopy procedure for brevity).

〈main, x〉() → 〈get, x〉(e, e)
〈get, a(x1, x2)〉(y1, y2) → let (z1, z2) = 〈get, x2〉(y1, y2) in

let (z3, z4) = 〈get, x1〉(z1, z2) in

(item(〈copy, x1〉(), z3), z4)

〈get, b(x1, x2)〉(y1, y2) → let (z1, z2) = 〈get, x2〉(y1, y2) in

let (z3, z4) = 〈get, x1〉(z1, z2) in

(z3, item(〈copy, x1〉(), z4))

〈get, e〉(y1, y2) → (y1, y2)

This time, we make only a single traversal on the input by
carrying around two lists at the same time, using two accumulating
parameters and two return values. The rules work in the natural way
that, if the input tree is ana node, then we augment the first list with
anitem node, and so on.

Expressiveness A natural question that arises here is: what is
the exact relationship between MTTs and mr-MTTs in terms of
expressiveness? In the previous section, we have shown an MTT
and an mr-MTT that perform exactly the same transformation.
These examples would suggest that MTTs and mr-MTTs might
have equal expressiveness. As stated already, it is indeed true in the
deterministic case. The formal proof will be shown in Section 4.1,
but the intuition is that each procedure in an mr-MTT returning a
k-tuple of trees can be split tok procedures each returning a single
tree (generalizing our example above).

We did not stop our investigation at the deterministic case, but
further proceeded to the nondeterministic case. One might ask why
we should care about the nondeterministic case from the first place,
given the situation where many practical tree transformations seem
to be deterministic. Nondeterminism is in fact quite useful or even
required in some areas, namely,

• to encode transformations or queries that are nondeterministic
by design; for example, the XDuce language for XML process-
ing has regular expression pattern matching whose semantics
on choices is nondeterministic [9];

• to approximately represent transformations in some higher-
level language (e.g., XSLT [1]) that allow complicated forms in
conditional expressions; such approximation may be useful for
performing typechecking, cf. [10, 11, 6];

• to encode queries that return asetof trees.

As already mentioned, in the nondeterministic case with call-
by-value semantics, mr-MTTs are strictly more expressive than
MTTs. Intuitively, consider an mr-MTT that is similar to the one
above, but has nondeterministic choices at each node and, depend-
ing on which choice to take, we put a different thing in the lists. We
cannot simply split the procedure to two since we would not nec-
essarily take the same choice at a given node in the two separate
traversals. In the formal proof given in Section 4.2, we will exhibit
a counterexample inspired by this observation and show that this
can be expressed by an mr-MTT but not an MTT. The proof of
the inexpressibility is a rather long and involved one, which is a
natural consequence of the current situation where there is no stan-
dard proof technique for tree transducers analogous to Pumping
Lemma in automata theory [8] (except for the height property, i.e.,
the maximal increase of tree heights from input to output, cf. [4],
which fails in our case since MTTs and mr-MTTs obviously have
the same height property).

Structure The rest of the paper is organized as follows. We first
define MTTs, giving their known properties, in Section 2, and then
define mr-MTTs in Section 3. In Section 4, we formally compare
the expressivenesses of MTTs and mr-MTTs in the deterministic
and the nondeterministic cases. Section 5 touches upon possible
future directions.

2. Preliminaries
This section gives the definition of (single-return) MTTs and their
known properties.

A setΣ with a mappingrank : Σ → N is called aranked set.
We sometimes annotate each elementσ ∈ Σ with its rank by a
superscript likeσk to indicate thatrank(σ) = k. Theproductof a
ranked setA and a setB is a ranked setA× B = {(a, b)k | ak ∈
A, b ∈ B}. Note that the rank of first component is inherited. The
setTΣ of treest over a ranked setΣ is defined by the following
BNF:

t ::= σk(t1, . . . , tk) (σk ∈ Σ)

In the rest of this paper, we sometimes omit parentheses for rank-0
and rank-1 symbols and write them like strings. For example, we
write abcd instead ofa(b(c(d()))).

When x0
1, . . . , x

0
m ∈ Σ and t, t1, . . . , tm ∈ TΣ, (simulta-

neous) substitution oft1, . . . , tm for x1, . . . , xm in t is written
t[x1/t1, . . . , xm/tm] (or sometimes writtent[~x/~t] for brevity) and
defined to be a tree where every occurrence ofxi (i = 1, . . . , m)
in t is replaced by the correspondingti.

Definition 1. Assume a setX = {x1, x2, . . .} of input variables
and a setY = {y1, y2, . . .} of (accumulating) parameters both of
rank-0. A macro tree transducer (MTT) is a tuple(Q, q0, Σ, ∆, R),
whereQ, Σ, and∆ are finite ranked sets. We callQ a set of states,
q0 ∈ Q an initial state of rank 0,Σ an input alphabet,∆ an output
alphabet, andR a finite set of translation rules of the form

〈qk, σm(x1, . . . , xm)〉(y1, . . . , yk) → r

where a right hand sider is a tree fromT∆∪(Q×X)∪Y , that
is, either a node constructionσk(r1, . . . , rk), a procedure call
〈qk, x〉(r1, . . . , rk), or an accumulating parametery wherer1, . . . , rk

themselves are fromT∆∪(Q×X)∪Y . We call the left hand side
of a rule arule head. We require that any MTT is well-formed,



that is, all free variables in the right hand side of each rule are
bound by the rule head. Given an MTT(Q, q0, Σ, ∆, R), a state
q ∈ Q is deterministicif there exists at most one rule of the form
〈q, σ(. . .)〉(. . .) → r in R for eachσ ∈ Σ and the whole MTT is
deterministic if all its states are deterministic.

Below, we will define the semantics of MTTs by a rewriting
relation over intermediate states called sentential forms. Intuitively,
a sentential form is an output tree that contains procedure call
forms 〈qk, σm(t1, . . . , tm)〉(s1, . . . , sk), i.e., application ofqk to
the input treeσm(t1, . . . , tm) ∈ TΣ with accumulating parameters
s1, . . . , sk ∈ T∆. In each rewriting step, we find a context that
holds such a procedure call and expand the call to the right hand
side of a matching rule with appropriate substitution.

Definition 2. Let M = (Q, q0, Σ, ∆, R) be an MTT. We define a
setΛM = ∆∪ (Q×TΣ) and call trees inTΛM sentential formsof
M . (We omit the subscriptM when it is clear.)

Definition 3. For a ranked setΣ and a rank-0 symbol˜ 6∈ Σ, a tree
C ∈ TΣ∪{˜} that contains exactly one occurrence of˜ is called
one-holeΣ-context. We writeC[s] as a shorthand forC[˜/s].

We give acall-by-value(also known asIO-mode) semantics of
MTTs. The definition is done by interpreting the translation rules
of MTTs as rewriting rules over sentential forms.

Definition 4. Let M = (Q, q0, Σ, ∆, R) be an MTT, andu, u′ ∈
TΛ. The binary “small-step evaluation” relationu ⇒ u′ is defined
when there is a rule inR of the form

〈qk, σm(x1, . . . , xm)〉(y1, . . . , yk) → r

and there are a one-holeΛ-contextC, input treess1, . . . , sm ∈ TΣ,
and output treest1, . . . , tm ∈ T∆, such that

u = C[〈q, σ(t1, . . . , tm)〉(s1, . . . , sk)]

and

u′ = C[r[x1/t1, . . . , xm/tm, y1/s1, . . . , yk/sk]].

That is, whenu has a context in which a procedure call appears,
this call can be expanded to the right hand side of a matching
rule with the subtreest1, . . . , tm substituted for the input variables
and the argumentss1, . . . , sk for the accumulating parameters. As
usual, the derivation relation⇒∗ is defined as a reflexive, transitive
closure of⇒. We say thatv is derivable fromu whenu ⇒∗ v and
defineu↓ = {s ∈ T∆ | u ⇒∗ s}. Two sentential formsu andv
are equivalent, writtenu ≡ v, whenu↓ = v↓.
Definition 5. Let M = (Q, q0, Σ, ∆, R) be an MTT, the transla-
tion τ(M) of M is defined as{(t, s) ∈ TΣ×T∆ | s ∈ 〈q0, t〉()↓}.
When a relationf is equal toτ(M), we say thatf is realizedby
M .

In the subsequent proofs, it is actually convenient to extend the
above-defined derivation relation from sentential forms to contexts.
Furthermore, it is also convenient to generalize contexts so as to
contain multiple occurrences of several kinds of holes.

Definition 6. For a ranked setΣ and rank-0 symbols̃ 1, . . . ,˜n 6∈
Σ, a treeC ∈ TΣ∪{˜1,...,˜n} is calledΣ-n-context. We write
C[s1, . . . , sn] as a shorthand forC[˜1/s1, . . . ,˜n/sn].

Thus, a one-holeΣ-context is aΣ-1-contextC that contains
exactly one occurrence of̃1.

Definition 7. Let M = (Q, q0, Σ, ∆, R) be an MTT and rank-
0 symbols˜1, . . . ,˜n 6∈ Λ. Then, forC, C′ ∈ TΛ∪{˜1,...,˜n},
we write C ⇒ C′ when the relation holds in the extended MTT
M ′ = (Q, q0, Σ, ∆ ∪ {˜1, . . . ,˜n}, R). The relationsC ⇒∗ C′
andC↓ are extended accordingly.

By using the derivation relation over contexts, the following
known propositions hold. Intuitively, when a sentential form can
be split to a context and subtrees inT∆, performing derivation
from the whole sentential form is equivalent to performing first
derivation from the context and then substitution of the subtrees.
We will repeatedly use these propositions in the sequel.

Prop 1 (Lemma 3.19 of [4]). LetC be aΛ-n-context ands1, . . . , sn ∈
T∆. Then we haveC[s1, . . . , sn]↓ = {D[s1, . . . , sn] | D ∈ C↓}
Prop 2 (Lemma 5.2 of [4]). LetC be aΛ-n-context andr1, . . . , rn ∈
TΛ. If (1) C contains exactly one occurrence for each of˜1, . . . ,˜n,
or (2) C contains at least one occurrence for each of˜1, . . . ,˜n

and the MTT is deterministic, then we haveC[r1, . . . , rn]↓ =
{D[s1, . . . , sn] | D ∈ C↓, si ∈ ri↓}

3. Multi-return macro tree transducers
In this section, we formally define multi-return macro tree trans-
ducers and translations realized by them.

The essential addition to mr-MTTs with respect to MTTs is con-
struction and deconstruction (via let expressions) of tuples of return
values. However, for simplicity, we adopt a style similar to an A-
Normal Form [5] inλ-calculus so that we disallow nesting of pro-
cedure calls, that is, every procedure call must appear immediately
as the bound expression of a let expression. In examples, though,
we sometimes use nested procedure calls, which should be read as
a short-hand for nested let forms. For instance,

let (z1, z2) = 〈q1, x〉(〈q2, x〉()) in

(〈q3, x〉(z1), 〈q4, x〉(z2))

is a short-hand for the following:

let z′2 = 〈q2, x〉() in

let (z1, z2) = 〈q1, x〉(z′2) in

let z′3 = 〈q3, x〉(z1) in

let z′4 = 〈q4, x〉(z2) in

(z′3, z
′
4)

Definition 8. Assume a setZ of rank-0 temporary variables. A
multi-return macro tree transducer (mr-MTT) is a tuple of six
components(Q, q0, Σ, ∆, D, R), whereQ, Σ, and∆ are ranked
sets andD is a mapping ofQ → N. As before, we callQ a set of
states,q0 ∈ Q an initial state of rank 0,Σ an input alphabet, and
∆ an output alphabet. Since each state in an mr-MTT may return
multiple values, we represent the number of such return values,
calleddimension, by usingD. Then,R is a finite set of translation
rules of the form:

〈qk, σm(x1, . . . , xm)〉(y1, . . . , yk) → r

wherer ∈ rhsD(q). Rules like this form are calledq, σ-rules. Here,
the setrhsd of right-hand-sidesr in dimensiond ∈ N is defined by
the following

r ::= β1 . . . βn (u1, . . . , ud) (n ≥ 0)

β ::= let (z1, . . . , zD(q)) = 〈q′k, x〉(u1, . . . , uk) in

whereu1, u2, · · · ∈ T∆∪Y ∪Z , z1, z2, · · · ∈ Z andx ∈ X. We
require that any mr-MTT is well-formed, that is, all free variables
in any subpart of the right hand side of each rule must be bound
in the surrounding expression (either in the rule head or in a let
binding). An mr-MTT is calleddeterministicif for every pair of
q ∈ Q andσ ∈ Σ, there exists at most oneq, σ-rule inR.

Below, we give a call-by-value semantics to mr-MTTs in a
similar way to the case of MTTs in the last section. That is, we first
define sentential forms of mr-MTTs and then translations realized



by mr-MTTs in terms of rewriting over sentential forms. Though,
we do not define contexts this time since the target of rewriting is
always the procedure call that appears in the very first let expression
of a given sentential form.

Definition 9. Let M = (Q, q0, Σ, ∆, R, D) be an mr-MTT. The
setKM of sentential formsκ of M in dimensiond are defined by
the following

κ ::= l1 . . . ln (u1, . . . , ud)

l ::= let (z1, . . . , zD(q)) = 〈qk, t〉(u1, . . . , uk) in

where t ∈ TΣ and u1, u2, · · · ∈ T∆∪Z . (The subscriptM is
omitted if it is clear.) Analogous to the definition of right-hand sides
of rules, we require that any sentential form is well-formed. That is,
any variable contained in a sentential form must be in scope from a
surrounding let bindings.

Definition 10. Let M = (Q, q0, Σ, ∆, R, D) be an mr-MTT and
t, t′ ∈ K. The binary relationt ⇒ t′ holds if t has the form

let (z1, . . . , zd) = 〈qk, σm(t1, . . . , tm)〉(s1, . . . , sk) in κ

and there is a rule inR of the form

〈qk, σm(x1, . . . , xm)〉(y1, . . . , yk) → l1 · · · ln (u1, . . . , ud)

whered = D(q) andt′ has the form

l′1 · · · l′nκ′

where

l′i = li[x1/t1, . . . , xm/tm, y1/s1, . . . , yk/sk] (i = 1, . . . , n)

u′j = uj [y1/s1, . . . , yk/sk] (j = 1, . . . , d)

κ′ = κ[z1/u′1, . . . , zd/u′d].

Here, we adopt the standard convention that substitution auto-
matically avoids inappropriate variable capture by silently per-
forming α-conversion. As before, we define the derivation rela-
tion ⇒∗ as a reflexive, transitive closure of⇒ and say thats
is derivable fromt when t ⇒∗ s. We then definet↓ = {s ∈
T d

∆ | t ⇒∗ s} where d is the dimension oft (note that the
final results can be tuples of trees). Technically, the procedure
call form 〈qk, t〉(s1, . . . , sk) is not a sentential form in an mr-
MTT, but for convenience we define〈qk, t〉(s1, . . . , sk)↓ as the set
(let (z1, . . . , zD(q)) = 〈qk, t〉(s1, . . . , sk) in (z1, . . . , zD(q)))↓.
Definition 11. Let M = (Q, q0, Σ, ∆, R, D) be an mr-MTT, A
relationτ(M) is defined as{(t, s) ∈ TΣ×T

D(q0)
∆ | s ∈ 〈q0, t〉()↓

}. When a relationf is equal toτ(M), f is said to berealizedby
M .

4. Expressiveness comparison
When the dimension of its initial state is1, an mr-MTT realizes
a translation of single trees to single trees. In this section, we
compare the expressive power of such mr-MTTs to normal MTTs.
Since mr-MTTs are obviously at least as expressive as MTTs, we
concentrate on whether the converse holds.

In the deterministic case, it is shown that returning multiple
trees will not change the expressiveness. In the nondeterministic
case, we prove that the multi-return capability does increase the
expressive power, by exhibiting an example of transformation that
can be written by an mr-MTT but not by an MTT.

4.1 The deterministic case

In order to show that a deterministic MTT can always be con-
structed from any deterministic mr-MTT, we define two functions:
(1) asplit function that divides a stateq returningd-tuples of trees

into d states returning single trees, and (2) abuild function that
turns an mr-MTT with all states returning single trees into an MTT.
Then, we formally prove that these two operations do not change
the translation realized.

Before that, however, we first need the technical lemma below.
In the definition of derivations for mr-MTTs in the previous sec-
tion, a let-bound procedure call in a sentential form is replaced by
the right hand side of one of its defining rules (with appropriate sub-
stitution), and then this right hand side is subject to derivation. The
lemma below states that the order between such replacement and
such derivation is interchangeable. That is, first fully evaluating the
procedure call alone and then replacing the let-bound variables with
the resulting tuples will derive exactly the same outputs. Note that
this lemma corresponds to Prop 2 (1) for normal MTTs. Although
we prove and use the lemma only for deterministic mr-MTTs in
this paper, it can be shown that it also holds for nondeterministic
case.

Lemma 1. Let M = (Q, q0, Σ, ∆, R, D) be a deterministic mr-
MTT andκ be a sentential form. Then the following equation holds.

(let (z1, . . . , zd) = 〈q, t〉(s1, . . . , sk) in κ)↓=[
{κ[z1/u1, . . . , zd/ud]↓|

(u1, . . . , ud) ∈ 〈q, t〉(s1, . . . , sk)↓}

Proof. The proof is done by induction on the structure of input trees
t. We first consider the case whent is a leaf nodeσ(). If there is no
rule q, σ-rule in R, then the both sides are empty and thus equal.
Otherwise, sinceM is deterministic, there is a uniqueq, σ-rule.
Here, sincet is a leaf node, the rule cannot contain procedure calls.
Thus the rule must have a form(r1, . . . , rd). So we have:

(let (z1, . . . , zd) = 〈q, t〉(s1, . . . , sk) in κ)↓
=(κ[z1/r′1, . . . , zd/r′d])↓

wherer′i = ri[y1/s1, . . . , yd/sd]

But here, since we have{(r′1, . . . , r′i)} = 〈q, t〉(s1, . . . , sk)↓, we
can conclude that this is equal to:
[
{κ[z1/u1, . . . , zd/ud]↓| (u1, . . . , ud) ∈ 〈q, t〉(s1, . . . , sk)↓}
We next consider the case whent is a branch nodeσ(t1, . . . , tm).

The case when noq, σ-rule is in R is similar to the case of leaf
node. Both sides become empty and thus equal. Otherwise, there is
a uniqueq, σ-rule of the formβ1 · · ·βn(r1, . . . , rd) Then

(let (z1, . . . , zd) = 〈q, t〉(s1, . . . , sk) in κ)↓
=(β′1 · · ·β′nκ′)↓

where β′i = βi[x1/t1, . . . , xm/tm, y1/s1, . . . , yk/sk], κ′ =
κ[z1/r′1, . . . , zd/r′d], andr′i = ri[y1/s1, . . . , yk/sk]. Let β1 be
let ~zβ1 = 〈q1, ti1〉(· · · ) in. By induction hypothesis, we can first
evaluate the procedure call inβ1 first, and replace the variables
z1, . . . , zd1 occurring in the rest by the result. Thus we have

(β′1 · · ·β′nκ′)↓
=
[
{(β′2 · · ·β′nκ′)[ ~zβ1/ ~uβ1]↓| ~uβ1 ∈ 〈q1, ti1〉(· · · )↓}

and, by expanding the remaining callsβ′2, . . . , β
′
n similarly, we

have:

=
[
{κ′[ ~zβ1/ ~uβ1] · · · [ ~zβn/ ~uβn]↓|

~uβ1 ∈ 〈q1, ti1〉(· · · )↓,
~uβ2 ∈ 〈q2, ti2〉(· · · )[ ~zβ1/ ~uβ1]↓,

...



~uβn ∈ 〈qn, tin〉(· · · )[ ~zβ1/ ~uβ1] · · · [ ~zβn−1/ ~uβn−1]↓}
On the other hand, a similar reasoning leads us to:

〈q, t〉(s1, . . . , sk)↓=
{(r′1, . . . , r′d)[ ~zβ1/ ~uβ1] · · · [ ~zβn/ ~uβn] |

~uβ1 ∈ 〈q1, t1〉(· · · )↓,
~uβ2 ∈ 〈q2, t2〉(· · · )[ ~zβ1/ ~uβ1]↓,

...

~uβn ∈ 〈qn, tn〉(· · · )[ ~zβ1/ ~uβ1] · · · [ ~zβn−1/ ~uβn−1]↓}
So by rewriting〈q, t〉(s1, . . . , sk) ↓ in the right-hand side of the
lemma statement according to the above equation, the question
boils down to the following equation

κ[~z/~r′][ ~zβ/ ~uβ ] = κ[~z/(~r′[ ~zβ/ ~uβ ])]

which holds by the associativity of substitutions.

Now we define thesplit operation on mr-MTTs and prove that
it preserves their meanings.

Definition 12. Let M = (Q, q0, Σ, ∆, R, D) be an mr-MTT.
We define a new mr-MTTsplit(M) = (Q′, q′0, Σ, ∆, R′, D′) as
follows.

Q′ =
[
{{q[1], . . . , q[D(q)]} | q ∈ Q}

q′0 = q0[1]

R′ = {〈q[i], σ(x1, . . . , xm)〉(y1, . . . , yk) → spliti(r) |
(〈q, σ(x1, . . . , xm)〉(y1, . . . , yk) → r) ∈ R, 1 ≤ i ≤ D(q)}

D′ = q 7→ 1 (constant function returning 1)

wherespliti is defined as follows:

spliti((u1, . . . , ud)) = ui

spliti(let (z1, . . . , zn) = 〈q, x〉(u1, . . . , uk) in κ) =

let z1 = 〈q[1], x〉(u1, . . . , uk) in

...

let zn = 〈q[n], x〉(u1, . . . , uk) in spliti(κ)

Note that thesplit operation preserves the determinism of the
input transducerM .

Lemma 2. Let M = (Q, q0, Σ, ∆, R, D) be a deterministic mr-
MTT. Then we haveτ(M) = τ(split(M)).

Proof. We prove that for each stateq ∈ Q and any treest ∈ TΣ,
s1, . . . , sk ∈ T∆, the following equation holds, applying which to
q0 yieldsτ(M) = τ(split(M)).

〈q, t〉(s1, . . . , sk)↓=
〈q[1], t〉(s1, . . . , sk)↓ × · · · × 〈q[D(q)], t〉(s1, . . . , sk)↓

The proof is done by induction on input treest. We first consider
the case whent is a leaf nodeσ(). If there is noq, σ-rule in M ,
there is noq[i], σ-rule for everyi, too. Hence, both sides of the
equation are∅ and thus equal. Otherwise, sinceM is deterministic,
there is a uniqueq, σ-rule. Sinceσ is a leaf, the rule cannot contain
procedure calls. So the rule has the form(r1, . . . , rD(q)) for some
r1, . . . , rD(q) ∈ T∆∪Y . The correspondingq[i], σ-rule in split(M)
is ri. Thus, both sides of the equation denote the equivalent set
{(r′1, . . . , r′D(q))} wherer′i = ri[y1/s1, . . . , yk/sk]. Note that the
determinacy is critically used here. That is, allq[i], σ-rules selected
correspond to the sameq, σ-rule in the original mr-MTT, since such
rule is unique.

We next consider the case whent is a branch nodeσ(t1, . . . , tm).
Again, if there is noq, σ-rule, both sides of the equation are
empty and thus equal. Otherwise, there is a uniqueq, σ-rule κ,
and what we have to show is:κ[~x/~t, ~y/~s]↓= split1(κ)[~x/~t, ~y/~s]↓
× · · · × splitD(q)(κ)[~x/~t, ~y/~s]↓. We prove this by an inner induc-
tion on the structure ofr, showing that the following equation holds
for any~x,~t, ~y, ~s, ~z and~u.

κ[~x/~t, ~y/~s, ~z/~u]↓=
split1(κ)[~x/~t, ~y/~s, ~z/~u]↓ × · · · × splitD(q)(κ)[~x/~t, ~y/~s, ~z/~u]↓

The base case, which is the case whenκ has no let bindings, is
proved in the same way as the case of a leaf node. The case when
it contains let bindings, i.e., has the following form

let (z1, . . . , zd) = 〈p, xj〉(r1, . . . , rl) in κ′

whered = D(p), the left hand side of the equation becomes

( let (z1, . . . , zd) = 〈p, tj〉(r′1, . . . , r′l) in κ′′)↓
wherer′i = ri[y1/s1, . . . yk/sk] for eachi andκ′′ = κ′[x1/t1, . . . ,
xm/tm, y1/s1, . . . yk/sk]. This is, by Lemma 1, equivalent to:

[
{κ′′[z1/u1, . . . , zd/ud]↓|

(u1, . . . , ud) ∈ 〈p, tj〉(r′1, . . . , r′l)↓}
By outer induction hypothesis, this is equivalent to:

[
{κ′′[z1/u1, . . . , zd/ud]↓ |

u1 ∈ 〈p[1], tj〉(r′1, . . . , r′l)↓, · · · ,

ud ∈ 〈p[D(p)], tj〉(r′1, . . . , r′l)↓}
Here, eachui and 〈p[i], tj〉(r′1, . . . , r′l) do not contain variables.
Thus, the substitution applied toκ′ can be distributed, and we have
an equivalent set
[
{κ′′[z1/u1, . . . , zd/ud]↓ |

u1 ∈ 〈p[1], tj〉(r′1, . . . , r′l)↓,
u2 ∈ 〈p[2], tj〉(r′1, . . . , r′l)[z1/u1]↓, · · · ,

ud ∈ 〈p[d], tj〉(r′1, . . . , r′l)[z1/u1] · · · [zd−1/ud−1]↓}
which is, by inner induction hypothesis, equivalent to

[
{split1(κ

′′)[z1/u1, . . . , zd/ud]↓
× · · · × splitD(q)(κ

′′)[z1/u1, . . . , zd/ud]↓ |
u1 ∈ 〈p[1], tj〉(r′1, . . . , r′l)↓,
u2 ∈ 〈p[2], tj〉(r′1, . . . , r′l)[z1/u1]↓, · · · ,

ud ∈ 〈p[d], tj〉(r′1, . . . , r′l)[z1/u1] · · · [zd−1/ud−1]↓}
Sincesplit(M) is deterministic, we have an equivalent set

[
{split1(κ

′′)[z1/u1, . . . , zd/ud]↓ |
u1 ∈ 〈p[1], tj〉(r′1, . . . , r′l)↓,
u2 ∈ 〈p[2], tj〉(r′1, . . . , r′l)[z1/u1]↓, · · · ,

ud ∈ 〈p[d], tj〉(r′1, . . . , r′l)[z1/u1] · · · [zd−1/ud−1]↓}
× · · ·×[

{splitD(q)(κ
′′)[z1/u1, . . . , zd/ud]↓ |

u1 ∈ 〈p[1], tj〉(r′1, . . . , r′l)↓,
u2 ∈ 〈p[2], tj〉(r′1, . . . , r′l)[z1/u1]↓, · · · ,

ud ∈ 〈p[d], tj〉(r′1, . . . , r′l)[z1/u1] · · · [zd−1/ud−1]↓}



This is, by Lemma 1 and the definition ofspliti, equivalent to

split1(κ)[~x/~t, ~y/~s, ~z/~u]↓ × · · · × splitD(q)(κ)[~x/~t, ~y/~s, ~z/~u]↓
as desired.

As a remark, we mention here without proof, that for a nonde-
terministic mr-MTTM , we haveτ(M) ⊆ τ(split(M)).

Next, we define thebuild operation that converts an mr-MTT to
an MTT. Basically, it simply rewrites letz = e1 in e2 by e2[z/e1]
and the determinacy assures the equivalence. However, there is a
subtle difference in the semantics. Namely, since a deterministic
mr-MTT could in fact be non-total (i.e., it may have noq, σ-rule
for someq andσ), if it binds a variablez to a procedure call that
yields no result and the variable is not mentioned after the binding,
then a wrongly built MTT might eliminate the call and yield some
result. To deal with this subtlety, we use an extra trick to ensure
such elimination never to happen.

Definition 13. Let M = (Q, q0, Σ, ∆, R, D) be an mr-MTT
such thatD is a constant function returning1. We define an MTT
build(M) = (Q′, q0, Σ, ∆, R′) as follows.

Q′ = Q ∪ {q2
id}

R′ = {〈q, σ(x1, . . . , xm)〉(y1, . . . , xk) → build(r, ∅) |
(〈q, σ(x1, . . . , xm)〉(y1, . . . , xk) → r) ∈ R}

∪ {〈qid, σm(x1, . . . , xm)〉(y1, y2) → y2 | σm ∈ Σ}
where

build(t, {z1, . . . , zn})
= 〈qid, x1〉(z1, 〈qid, x1〉(· · · , 〈qid, x1〉(zn, t) · · · ))

build(let z = 〈q, x〉(s1, . . . , sk) in r, V )

= build(r, V ∪ {z})[z/〈q, x〉(s1, . . . , sk)]

Note that thebuild operation preserves the determinism of the
input transducerM .

The extra stateqid ignores the input and the first parameter
and simply returns the second parameter; this state is used in the
internally definedbuild function. The internalbuild function takes
a right hand side of an mr-MTT and its possible free variables, and
returns a right hand side of an MTT. In the first rule ofbuild, for
each variablezi, we callqid with the first argumentzi. Since each
such variable will be replaced with the corresponding procedure
call by the second rule, this treatment makes sure that all procedure
calls that are made in the original mr-MTT are indeed made in the
converted MTT.

Lemma 3. Let M = (Q, q0, Σ, ∆, R, D) be a deterministic mr-
MTT such thatD is a constant function returning1. Then the MTT
build(M) realizes the same translation asM .

Proof. We prove the following for anyq ∈ Q, t ∈ TΣ, and
s1, . . . , sk ∈ T∆ by induction on the structure on input treest:

〈q, t〉(s1, . . . , sk)↓M= 〈q, t〉(s1, . . . , sk)↓build(M)

If t is a leafσ(), then aq, σ-rule (1) does not exist for either
side, or (2) uniquely exists for both sides in exactly the same form.
In either case, obviously both sides become equal.

If t is a branchσ(t1, . . . , tm), it is either that (1) aq, σ-
rule does not exist for either side, or (2) uniquely exists for both
sides, of the formr andbuild(r, ∅). In the non-existing case, both
sides become empty and thus equal. For the case that the corre-
sponding rules exist, what we have to prove is:r[~x/~t, ~y/~s]↓M=
build(r, ∅)[~x/~t, ~y/~s]↓build(M). We prove this by showing that for
any sentential formκ of M such that each input tree contained inκ

is a subtree oft, for anyZ = {z1, . . . , zn}, andu1, . . . , un ∈ T∆,
the following holds:

κ[~z/~u]↓M= build(κ, Z)[~z/~u]↓build(M)

The proof is done by induction on the number of lets in sentential
forms. Whenκ does not have any let bindings, it is thatκ ∈ T∆.
So both sides derives only a treeκ, thus are equal. If ruleκ has the
form:

let z′ = 〈q, ti〉(s1, . . . , sk) in κ′

We have

κ[~z/~u]↓M

=(let z′ = 〈q, ti〉(s1, . . . , sk) in κ′)[~z/~u]↓M

=
[
{κ′[~z/~u][z′/u′]↓M | u′ ∈ 〈q, ti〉(s1[~z/~u], . . . , sk[~z/~u])↓M}
by Lemma 1

=
[
{build(κ′, Z ∪ {z′})[~z/~u][z′/u′]↓build(M)

| u′ ∈ 〈q, ti〉(s1[~z/~u], . . . , sk[~z/~u])↓build(M)}
by the hypotheses of both the inner and the outer induction

=build(κ′[z′/˜1], Z ∪ {˜1})[~z/~u]

[〈q, ti〉(s1[~z/~u], . . . , sk[~z/~u])]↓build(M)

by Prop 2 (by definition,build(· · · , Z ∪ {˜1}) has at least

one occurrence of̃ 1 andbuild(M) is deterministic)

=build(κ, Z)[~z/~u]↓build(M) by commuting substitutions

as desired.

Again, as a remark, we haveτ(M) ⊆ τ(build(M)) for a
nondeterministic mr-MTTM of dimension 1. The proof is omitted.

Now, by Lemma 2 and 3, we have the following proposition as
desired.

Prop 3. For any deterministic mr-MTT, there effectively exists a
deterministic MTT that realizes the same translation.

4.2 The nondeterministic case

When nondeterministic choices are used, thesplit operation on
an mr-MTT does not retain the realized translation. Consider the
following mr-MTT with the input alphabet{s1, z0}, the output
alphabet{root2, a1, b1, e0, A1, B1, E0}, and the set of rules:

〈q0, s(x)〉() → let (z1, z2) = 〈q1, x〉(A(E)) in root(a(z1), z2)

〈q0, s(x)〉() → let (z1, z2) = 〈q1, x〉(B(E)) in root(b(z1), z2)

〈q0, z〉() → root(e, E)

〈q1, s(x)〉(y2) → let (z1, z2) = 〈q1, x〉(A(y2)) in (a(z1), z2)

〈q1, s(x)〉(y2) → let (z1, z2) = 〈q1, x〉(B(y2)) in (b(z1), z2)

〈q1, z〉(y2) → (e, y2)

This mr-MTT nondeterministically translates a stringss · · · ssz of
lengthn to a root node holding two strings of the same length
n. The first string in the output consists of symbolsa andb and
terminates bye. The second consists ofA and B and terminates
by E. Moreover, the second string is always the reverse of the
first, ignoring the case and the leaf symbol (e or E). Note that if
we split the procedureq1 returning pairs of trees into two single-
return procedures, we have a different translation realized. That is,
although the split version still generates trees holding two strings
(one with symbolsa andb, and the other withA andB), the two
strings, this time, are not necessarily related (not always the reverse
of each other).

In fact, not only the split version of the above mr-MTT butany
MTT cannot realize the translation realized by the above mr-MTT.



We refer to this translation bytwist throughout this paper. More

precisely, abbreviatinḡk for

kz }| {
s . . . s z, we define

twist = {(n̄, root(t, revUp(t))) | t ∈ (a|b)n
e}

where:

revUp(x) = revUp′(x, E())

revUp′(a(x), y) = revUp′(x, A(y))

revUp′(b(x), y) = revUp′(x, B(y))

revUp′(e(), y) = y

Now, the goal of the rest of this section is to prove the following
proposition, which takestwist as a witness that nondeterministic
mr-MTTs are strictly more expressive than MTTs.

Prop 4. No macro tree transducer realizestwist.

The outline of the proof is as follows. We first suppose that an
MTT realizestwist and derive a contradiction. How we derive it is
to show that the MTT that supposedly realizestwist yields a set of
outputs whose size has a polynomial upper bound with respect to
the length of the input string, while the size oftwist’s output set is
actually exponential.

However, giving this upper bound directly is difficult since too
many possibilities need to be considered for the supposed MTT. For
this reason, we introduce two restricted forms, calledweak normal
form and (strong) normal formand use these as follows. Given a
sentential form that produces the desired outputs (in particular, the
one to start with, i.e., the initial procedure applied to an inputn̄), we
will convert it to a weak normal form, and then to a set of normal
forms. We can show that, in the first conversion, the set of outputs
is preserved and, in the second conversion, the union set of outputs
is either preserved or enlarged. We then give an upper bound for
the size of the final union set, which is also an upper bound for the
original one.

Below, without loss of generality, we consider only MTTs
with input alphabetΣ = {s1, z0} and output alphabet∆ =
{root2, a1, b1, e0, A1, B1, E0}. Also, we writeOn̄ to denote the
output language oftwist from a particular input̄n, i.e., On̄ =
{root(t, revUp(t)) | t ∈ (a|b)ne}, andO to denote the output
language from any input, i.e.,O =

S
n≥0 On̄.

Conversion to weak normal form As in the following definition,
a weak normal form is a sentential form whose each subtree is
either a desired output (On̄), a tree with noroot (T∆\{root}), or
a procedure call where its arguments are sentential forms and that
produces some and only desired outputs.

Definition 14. Let M = (Q, q0, Σ, ∆, R) be an MTT realizing
twist, and n̄ ∈ TΣ. We define the set ofweak normal forms
W n̄

Λ ⊆ TΛ (recall Λ = ∆ ∪ (Q × TΣ)) as the minimum set
satisfying the following conditions:

• On̄ ∪ T∆\{root} ⊆ W n̄
Λ

• v ∈ W n̄
Λ if v = 〈qk, m̄〉(v1, . . . , vk) andv1, . . . , vk ∈ W n̄

Λ

with ∅ ( v↓⊆ On̄.

To show that a sentential form yielding only desired outputs
can be converted to an equivalent weak normal form, the following
lemma is crucial. Intuitively, this states that, when we know that
such a sentential form contains a subtreer that derives a trees with
noroot, we do not have to consider other derivations starting from
the subtreer, that is, replacing the subtreer by its specific results
will not change the set of outputs from the whole sentential form.

Lemma 4. SupposeM = (Q, q0, Σ, ∆, R) to be an MTT realizing
twist. LetC be a one-holeΛ-context andr be a tree inTΛ, such that
C[r]↓ ⊆ O andr ⇒∗ s wheres ∈ T∆\{root}. ThenC[r] ≡ C[s].

Proof. Choose anyD ∈ C↓. By Prop 2, it must be the case that
D[s] ∈ C[r]↓. SinceC[r]↓⊆ O ands ∈ T∆\{root}, the contextD
must be either in the form

• that does not contain anỹ1,
• root(· · ·˜1 · · · , · · · ), or
• root(· · · , · · ·˜1 · · · ).

In the first case, it is trivial that, for alls′ ∈ r↓, we haveD[s′] =
D = D[s]. In the second case, by Prop 1, for alls′ ∈ r ↓ we
haveD[s′] ∈ O. So here,revUp(s′) must be equal torevUp(s).
SincerevUp is one-to-one mapping, this impliess′ = s, and thus
we concludeD[s′] = D[s]. The third case is similar to the second
case, and again we haveD[s′] = D[s] for all s′ ∈ r↓. So in any
cases, we haveD[s′] = D[s] for all D ∈ C ↓ ands′ ∈ r ↓. So
C[r]↓= {D[s′] | D ∈ C ↓, s′ ∈ r↓} = {D[s] | D ∈ C ↓} =
C[s]↓

By using the above lemma, we show that, after applying this
replacement for all such subtreesr as well as replacing all illegit-
imate trees (like aroot containing aroot or ana containing a
root) with a legitimate but nonce tree (e() in the proof), we will
obtain a weak normal form.

Lemma 5. SupposeM = (Q, q0, Σ, ∆, R) to be an MTT realizing
twist. For anyr ∈ TΛ where∅ ( r↓ ⊆ On̄ for somēn ∈ TΣ, there
exists a treewn̄(r) ∈ W n̄

Λ such thatwn̄(r) ≡ r.

Proof. To obtainwn̄(r), we first apply the following translation to
r repeatedly, until subtrees satisfying the condition are not found.

• Find a subtreerc such thatrc ↓* On̄ ∪ T∆\{root}. If found,
replacerc in r by e().

Since suchrcs will never be contained in the final output, i.e., there
is no contextD ∈ C ↓ containing an occurrence of̃ 1, where
r = C[rc] andC is a one-hole context. So replacing it by a nonce
subtreee() still yields an equivalent sentential form.

Next, we repeatedly apply the following translation.

• Find a subtreerc = 〈q, m̄〉(r1, . . . , rk) of r such thatrc ⇒∗

s ∈ T∆\{root}. If found, replacerc in r by s.

Since one iteration of this translation decreases the number of
Q×TΣ nodes inr, this process terminates. By Lemma 4, the result
of this translation is equivalent tor.

Finally, we repeatedly apply the following translation.

• Find a subtreerc = 〈q, m̄〉(r1, . . . , rk) of r such thatrc is an
descendant of some node of the formδ(· · · ) whereδ ∈ ∆. If
found, replacerc in r by e().

At this stage after the preceding two translation, it must be that
rc ↓⊆ On̄. Again, suchrcs will never be contained in the final
output. So replacing it bye() still yields an equivalent sentential
form.

After these three translations, each subtree of formrc =
〈q, m̄〉(· · · ) does not appear belowδ(· · · ) nodes, andrc↓⊆ On̄.
Also for each subtree of formrc = δ(· · · ), we haverc ↓⊆
On̄ ∪ T∆\{root}. Also by Prop 2,rc ↓6= ∅ for all subtreesrc of
r, sincer↓6= ∅. Thus the translated treew(r) is now contained in
W n̄

Λ .



Conversion to normal form As in the following definition, a
normal form is a sentential form that has a unique procedure call
at the root whose each argument is either a tree with noroot or a
dummy tree and that yields only desired outputs.

Definition 15. Let M be an MTT realizingtwist, andn̄ ∈ TΣ. We
define the set ofnormal formsN n̄

Λ ⊆ W n̄
Λ as

N n̄
Λ = {s | s =〈qk, m̄〉(s1, . . . , sk), qk ∈ Q, m̄ ∈ TΣ,

si ∈ {dummyn} ∪ T∆\{root}, ∅ ( s↓⊆ On̄}
where:

dummyn = root(

nz }| {
a · · · a e,

nz }| {
A · · · A E)

(We take here a dummy tree as the above, but it can be any tree if
it is in On̄.)

Before showing that a weak normal form can be converted to
a set of normal forms, we give the following lemma. Intuitively,
this states that if a sentential form that derives only desired outputs
can be split to a context with several holes and desired output trees,
then the context itself derives a hole or a desired output tree without
using any hole. (The lemma holds for not only weak normal forms
but any sentential forms.)

Lemma 6. SupposeM = (Q, q0, Σ, ∆, R) to be an MTT realizing
twist, andn̄ ∈ TΣ. LetC be aΛ-c-context such thatC[s1, . . . , sc]↓
⊆ On̄ for somes1, . . . , sc ∈ On̄. ThenC↓⊆ {˜1, . . . ,˜c} ∪On̄.

Proof. Suppose a∆-contextD ∈ C↓ such thatD /∈ {˜1, . . . ,˜c}∪
On̄. By the conditionC[s1, . . . , sc]↓ ⊆ On̄, it must be the case
D[s1, . . . , sc] ∈ On̄ (by Prop 1). Since the root node of every tree
in On̄ is root andD /∈ {˜1, . . . ,˜c} by the assumption, the root
node ofD is root. Also by the assumptionD /∈ On̄, for some
1 ≤ i ≤ n, the hole˜i is a part ofD. So,D[s1, . . . , sc] contains
si as a subtree. Hence, the treeD[s1, . . . , sc] contains at least two
root nodes, one at the root position and the other at the position of
si. This impliesD[s1, . . . , sc] /∈ On̄, which is a contradiction.

Conversion from a weak normal form to a set of normal forms
works as follows. Recall that a weak normal form is a tree of pro-
cedure calls where each leaf is either fromOn̄ or from T∆\{root}
and each procedure call derives an output tree fromOn̄. We repeat
the following. If the root procedure call of a weak normal formt
has other procedure calls as arguments, e.g.,

t = 〈q, m̄〉(〈q′, m̄′〉(. . .), 〈q′′, m̄′′〉(. . .), s)
(where the arguments are two calls and a tree fromT∆\{root}) then
the previous lemma ensures that the root call results in either a
result of one of the inner calls or a result of the root call without
using the inner calls. Thus,

t↓⊆ 〈q′, m̄′〉(. . .)↓ ∪〈q′′, m̄′′〉(. . .)↓ ∪(〈q, m̄〉(˜1,˜2, s)↓ ∩On̄)

By repeating this “expansion” on the first and second clauses, the
result set oft can be bounded by the union of clauses like the third
clause above, that is, the results of any procedure calls appearing
in t without using any of its inner procedure call arguments (more
precisely, in fact, any argument deriving an output inOn̄). Note
that the results of each clause like the third clause above are further
bounded by the call form where each hole is replaced by the
dummy tree defined above, like

〈q, m̄〉(dummyn, dummyn, s).

We take the set of all such forms constructed from the original weak
normal form as the set of the converted normal forms.

Lemma 7. SupposeM = (Q, q0, Σ, ∆, R) to be an MTT realizing
twist. Let n̄ ∈ TΣ. There are mappingsNQ : W n̄

Λ → P(N n̄
Λ ) and

NV : W n̄
Λ → P(T∆) such that, for anyv ∈ W n̄

Λ ,

• v↓⊆ S{u↓| u ∈ NQ(v)} ∪NV (v)
• |NQ(v)| ≤ the number ofQ× TΣ nodes inv
• |NV (v)| ≤ the number of maximal∆ nodes inv

Here, a maximal∆ node means a node that is labeled by an element
of ∆ and no symbol of∆ occurs further up inv.

Proof. We takeNQ andNV as follows:

NQ(v) = {Rvs [dummyn, . . . , dummyn] |
vs = 〈qk, m̄〉(v1, . . . , vk) is a subtree ofv}

NV (v) = {vδ | vδ is a maximal subtree ofv labeled by∆}
whereRvs is aΛ-k-context defined as follows:

Rvs = 〈qk, m̄〉(α1, . . . , αk)

whereαi = ˜i if ∅ ( vi↓⊆ On̄, or αi = vi otherwise

Intuitively, Rvs is a context obtained fromvs by opening holes at
the position of the children that generateOn̄ trees. The size condi-
tions andNV (v) ⊆ T∆ immediately follow from the definition of
NQ andNV .

Since v ∈ W n̄
Λ , every subtreevs of v that has the form

〈qk, m̄〉(v1, . . . , vk), it is that vs ↓⊆ On̄. So by Lemma 6 and
Prop 2, we haveRvs↓ ⊆ {˜1, . . . ,˜k} ∪ On̄. Thus, for all
u = Cvs [dummyn, . . . , dummyn] ∈ NQ(v), it must be the case
u↓⊆ On̄, which implies thatNQ(v) ⊆ N n̄

Λ .
The inclusionv↓⊆ S{u↓| u ∈ NQ(v)} ∪ NV (v) is proved

by induction on the structure ofv. Base case is the case when
v ∈ On̄ ∪ T∆\{root}. Sincev ↓= {v} and v ∈ NV (v) in this
case, the inclusion trivially holds. The essential case is whenv is in
the form〈qk, m̄〉(v1, . . . , vk) ∈ W n̄

Λ wherev1, . . . , vk ∈ W n̄
Λ and

∅ ( v↓⊆ On̄.

〈qk,m̄〉(v1, . . . , vk)↓
= {D[v′1, . . . , v

′
k] | D ∈ Rv↓, v′i ∈ vi↓} by Prop 2

⊆ {D[v′1, . . . , v
′
k] |

D ∈ {˜1, . . . ,˜k} ∪ (Rv↓ ∩On̄), v′i ∈ vi↓} by Lemma 6

= v1↓ ∪ · · · ∪ vk↓ ∪(Rv↓ ∩On̄)

⊆ v1↓ ∪ · · · ∪ vk↓ ∪Rv[dummyn, . . . , dummyn]↓
by Prop 2. Sincẽ i does not contribute any outputs inOn̄,

substitution withdummyn is safe.

⊆
k[

i=1

`[{u↓| u ∈ NQ(vi)} ∪NV (vi)
´∪

Rv[dummyn, . . . , dummyn]↓ by IH

⊆
[
{u↓| u ∈ NQ(v)} ∪NV (v) by definition ofNQ andNV

Polynomial upper bound The proof for the polynomial upper
bound roughly goes as follows. First, we can consider a series of
sets of normal forms given as follows. We start with taking the set
of normal forms of the weak normal forms of the initial sentential
form. Each normal form here has the form〈q, n̄〉(. . .). We take a
one-step derivation. The resulting sentential form is not a normal
form, and therefore we again take the set of normal forms of the
weak normal form of this. Each normal form must now have the
form 〈q, n− 1〉(. . .). By repeating this, we obtainn + 1 sets of
normal forms.

The above way of taking a series of sets of normal forms does
not, however, ensure that the size of each set is polynomial and
might actually grow exponentially. For this reason, each time we



take a set of normal forms, we only choose the set of representa-
tives, namely, only one procedure call for each pair of state and
symbol.

The next lemma is crucial to justify this. It intuitively states that
if two normal forms are procedure calls with the same pair of state
and input node, then no matter what arguments they have, the sets
of trees produced by them arealmostthe same where the size of the
difference is bounded by a constant not dependent onn. By using
this, Lemma 9 will show that taking only the representatives leaves
only a polynomial number of remainders.

Lemma 8. SupposeM = (Q, q0, Σ, ∆, R) to be an MTT re-
alizing twist. Let n̄ ∈ TΣ. Let t = 〈qk, m̄〉(s1, . . . , sk) and
t′ = 〈qk, m̄〉(s′1, . . . , s′k) both inN n̄

Λ . Then we have

|t↓ \ t′↓ | ≤ k(k − 1)

Proof. Let C be a context〈qk, m̄〉(˜1, . . . ,˜k). Then by Prop 1,
we have

t↓ \ t′↓ = {D[s1, . . . , sk] | D ∈ C↓} \ {D[s′1, . . . , s
′
k] | D ∈ C↓}

⊆ {D[s1, . . . , sk] | D ∈ C↓,D[s1, . . . , sk] 6= D[s′1, . . . , s
′
k]}

We show the size of the last set is less than or equal tok(k − 1).
For all D ∈ C ↓, we haveD[s1, . . . , sk] ∈ t ↓⊆ On̄ and

D[s′1, . . . , s
′
k] ∈ t′ ↓⊆ On̄. SoD must have either one of the

following forms:

1. D = ˜i for somei such thatsi = s′i = dummyn.
2. D ∈ On̄.
3. D = root(D1[˜i], sD) whereD1 is a one-hole context,sD ∈

T∆\{root} and for somei such thatsi, s
′
i ∈ T∆\{root}

4. D = root(sD,D1[˜i]) whereD1 is a one-hole context,sD ∈
T∆\{root} and for somei such thatsi, s

′
i ∈ T∆\{root}.

5. D = root(D1[˜i],D2[˜j ]) whereD1 andD2 are one-hole
contexts, for somei, j such thati 6= j and si, sj , s

′
i, s

′
j ∈

T∆\{root}.

In the case 1 and case 2, triviallyD[s1, . . . , sk] = D[s′1, . . . , s
′
k]

holds. In the case 3, by the definition ofOn̄, it must be the case that
revUp(D1[si]) = sD = revUp(D1[s

′
i]). SincerevUp is a one-to-

one mapping, we can concludesi = s′i. Hence,D[s1, . . . , sk] =
D[s′1, . . . , s

′
k]. The case 4 is similar.

In the case 5, by definition ofOn̄, the lengths ofD1[si],
D2[sj ], D1[s

′
i], and D2[s

′
j ] are all equal ton. So it must be

that length(si) = length(s′i) and length(sj) = length(s′j),
wherelength(s) denotes the number of rank-1 nodes ins. Also
by the definition ofOn̄, we haverevUp(D1[si]) = D2[sj ] and
revUp(D1[s

′
i]) = D2[s

′
j ]. So the reverse ofsi is being the prefix

of D2[sj ].
Here, we consider two cases, namely: the caselength(si) +

length(sj) ≤ n and the caselength(si) + length(sj) > n. For
the former case,length(si) is less than or equal tolength(D2).
Sosi must be the reverse of a prefix ofD2. Since exactly the same
thing holds fors′i, we can concludesi = s′i, and similarlysj = s′j .
So in this case, again we haveD[s1, . . . , sk] = D[s′1, . . . , s

′
k]. For

the latter case, sincelength(si) > length(D2), the contextD2 is
being a prefix of the reverse ofsi. Thus,D2 is uniquely determined
from si and the length ofsj . By a similar argument, we also have
thatD1 is uniquely determined fromsj and the length ofsi. So
for a specifici andj, the corresponding contextD of the 5th form
is determined uniquely. Since the number of ways to choose two
numbersi andj from1 · · · k isk(k−1), the number of the contexts
D in this form is at mostk(k − 1).

So by the argument above, we can conclude that the number
of context that satisfiesD[s1, . . . , sk] 6= D[s′1, . . . , s

′
k] is at most

k(k − 1). This proves the lemma.

Lemma 9. SupposeM = (Q, q0, Σ, ∆, R) to be an MTT realizing
twist. Let n̄ ∈ TΣ. For all N ⊆ N n̄

Λ , there exist setsN ′ and D
satisfying the following conditions:

• N ′ ⊆ N n̄
Λ such that|N ′| ≤ (m + 1)|Q|, wherem is the

maximum number such that̄m is contained inN .
• D ⊆ On̄ such that|D| ≤ K(K − 1)|N |, whereK is the

maximum rank of states inQ.
• S{m↓| m ∈ N} =

S{n′↓| n′ ∈ N ′} ∪D.

Proof. Let rep : Q × TΣ → N be any partial function that
rep(q, m̄) returns an element ofN whose root is〈q, m̄〉. We extend
rep to N n̄

Λ and takeN ′ as{rep(n) | n ∈ N}. Since the size of
the domain ofrep is less than or equal to(n + 1)|Q|, we have
|N ′| ≤ (n + 1)|Q|. Here, we takeD as

D =
[
{n↓| n ∈ N} \

[
{n′↓| n′ ∈ N ′}

=
[
{n↓| n ∈ N} \

[
{rep(n)↓| n ∈ N}

⊆
[
{(n↓ \rep(n)↓) | n ∈ N}

By Lemma 8, we have|n↓ \rep(n)↓ | ≤ K(K − 1). Hence, the
size ofD is less than or equal toK(K − 1)|N |. The last equation
in the statement is satisfied by the definition ofD.

The following lemma then proves that, at each step, the set of
normal forms and the set of remainders produced there both have
polynomial sizes.

Lemma 10. SupposeM = (Q, q0, Σ, ∆, R) to be an MTT real-
izing twist. Let n̄, m̄ ∈ TΣ. S be a set of trees inN n̄

Λ and each
member ofS has the form〈q, m̄〉(· · · ) for someq ∈ Q. Then there
is setsSD′ ⊆ On̄ and SN′ ⊆ N n̄

Λ whose each member has the
form 〈q, m− 1〉(· · · ) for someq ∈ Q, such that

• S{n↓| n ∈ S} ⊆ S{n′↓| n′ ∈ SN′} ∪ SD

• |SN′ | ≤ m|Q|
• |SD′ | ≤ (1 + K(K − 1))H|S||R|

whereH is the maximum number of subtrees contained in the right
hand side of rules inR.

Proof. Let Sx be{t | s ⇒ t, s ∈ S}. Then we have|Sx| ≤ |R||S|,
and by definition of↓, we have

S{s↓| s ∈ S} =
S{s↓| s ∈ Sx}.

Let SW = {w(s) | s ∈ Sx, s↓ 6= ∅} wherew is the function
whose existence is proved in Lemma 5. Then we haveSW ⊆ W n̄

Λ

and
S{s↓| s ∈ Sx} =

S{s↓| s ∈ SW } by the lemma. Since the
size|SW | is less than or equal to|Sx|, we have|SW | ≤ |S||R|.

Let SQ =
S{NQ(s) | s ∈ SW } andSV =

S{NV (s) | s ∈
SW } whereNQ andNV are the functions in Lemma 7. Then by
the lemma we haveSQ ⊆ N n̄

Λ , SV ⊆ T∆, and
S{s↓| s ∈ SW } ⊆S{v ↓| v ∈ SQ} ∪ SV . The sizes of the sets is, by the lemma,

|SQ| ≤ H|S||R| and|SV | ≤ H|S||R|.
Finally, letSN′ andSD be the sets that the existence of them is

assured by Lemma 9 by takingSQ asN . Then by the lemma we
have|SN′ | ≤ m|Q|, |SD| ≤ K(K − 1)H|S||R|, and

S{v↓| v ∈
SQ} =

S{s↓| s ∈ SN′} ∪ SD.
Note that all procedure calls in trees inSx must have the form

〈q, m− 1〉(· · · ), by the definition of⇒, which also holds for trees
in SN′ , by the construction of all preceding lemmata (for the case
m = 0, the setSx does not contain any procedure calls, and thus
SQ, S′N , and SD becomes empty). LetSD′ = (SV ∩ On̄) ∪
SD. Then bySN′ and SD′ , all conditions in the statement are
satisfied.

Putting the preceding lemmata in this section altogether, we
obtain the following corollary, which poses a polynomial upper



bound on the size of the output language of an MTT that realizes
twist.

Cor 1. SupposeM = (Q, q0, Σ, ∆, R) to be an MTT realizing
twist. Let n̄ ∈ TΣ. Then

|〈q0, n̄〉()↓ | ≤ (n + 1)2(1 + K(K − 1))H|Q||R|

Proof. Let Sn = {〈q0, n̄〉()} ⊆ N n̄
Λ . Let Si andDi be the sets

whose existence is assured by the preceding lemma by takingSi+1

asS. Then by the lemma,

|〈q0, n̄〉()↓ | ≤|
n[

i=0

Di−1|

≤
nX

i=0

(1 + K(K − 1))H|Si||R|

≤
nX

i=0

(1 + K(K − 1))H(i + 1)|Q||R|

≤
nX

i=0

(1 + K(K − 1))H(n + 1)|Q||R|

=(n + 1)2(1 + K(K − 1))H|Q||R|

The corollary, however, leads to a contradiction, recalling that
the size oftwist’s output set is actually exponential. Hence there
exists no MTT realizingtwist, proving the goal proposition of this
section.

Proof of Prop 4.In order for an MTTM to realize thetwist trans-
lation, it must be that|〈q0, n̄〉()↓ | = |On̄|. However,|On̄| = 2n.
The corollary implies that an inequation2n ≤ (n+1)2(1+K(K−
1))H|Q||R|, which does not hold when we take sufficiently large
n.

5. Future Work
This work is the very first step of our investigation on mr-MTTs
and many interesting questions concerning the expressiveness are
still left unanswered. For example, what is the relationship between
mr-MTTs andcompositionof conventional MTTs? We have not yet
encountered any translation that can be realized by a mr-MTT but
not by a composition of MTTs (thetwist translation, which we
used as a counterexample not realizable by an MTT, is realized by
the composition of two MTTs: one MTT that nondeterministically
generates a sequence ofas andbs, and the other MTT that gener-
ates its reversal deterministically). But it is still open whether inclu-
sion of mr-MTT by MTTn holds or not. Another example of open
questions is whether mr-MTTs create a proper hierarchy by dimen-
sion, i.e., whether there is any translation that can be expressed by
an mr-MTT with dimensiond but not by mr-MTTs with a smaller
dimension.
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