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Abstract

Macro tree transducers are a simple yet expressive formal mode
for XML transformation languages. The power of this model comes
from its accumulating parameters, which allow to carry around sev-
eral output tree fragments in addition to the input tree. However,
while each procedure is enabled by this facility to propagate in-
termediate results in a top-down direction, it still cannot do it in a
bottom-up direction since it is restricted to return only a single tree
and such tree cannot be decomposed once created. In this paper,
introducemulti-return macro tree transducers as a mild extension
of macro tree transducers with the capability of each procedure to
return more than one tree at the same time, thus attaining symme
try between top-down and bottom-up propagation of information.

We illustrate the usefulness of this capability for writing practically

meaningful transformations. Our main technical contributions con-
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This paper introduces a mild extension of MTTs caltedIti-
jreturn macro tree transducer@nr-MTT) where each state is en-
dowed the capability of returning more than one tree. We will see
below that this addition is indeed useful in writing concise pro-
grams for practically meaningful transformations that need a longer
and more cumbersome description in conventional MTTs. How-
ever, beyond this informal argument, one would naturally ask: how
are the expressivenesses different between MTTs and mr-MTTs in

Wgrinciple? Our main contributions in this paper give affirmative an-

swers to this question in two cases:

1. In the deterministic case, these two are equally expressive.

2. In the nondeterministic case with the call-by-value semantics,
mr-MTTs are strictly more expressive than MTTs.

Multi-return macro tree transducers Let us informally introduce

sists of two formal comparisons of the expressivenesses of macroMTTs and mr-MTTs to illustrate how the multi-return capability is

tree transducers and its multi-return extension: (1) in the determin- yseful. First, MTTs can be seen as a simple functional language
istic case, the expressive powers of these two coincide (2) in the where the procedures can be defined only by induction on the first
nondeterministic case (with the call-by-value evaluation strategy) argument. The following shows an MTT expressing a transforma-
multi-return macro tree transducers atdctly more expressive. tion that takes a tree consisting of binaey gndb) and leaf )
nodes and returns anmnode holding two lists. The first list consists

. of item nodes each of which contains the first subtree of ande

1. Introduction appearing in the input tree; the second list is similar but collects the
The emergence of XML has invoked an active body of research of first subtrees of the nodes.

the formal study of tree transformation models. Among these, the .

tree transducer family has drawn much attention since it is expres- {main, 2)() —r({geta, z)(e), (getb, z)(e))

sive enough to represent a wide range of practical transformations, ~ (geta, a(z1,z2))(y) —item(({copy, z1)(),

yet simple enough to ensure various desirable properties such as (geta, 21) ((geta, 22)(y)))
exact typechecking, evaluation complexity bounds, composability,

streaming, and so on [2, 4, 7, 12, 15, 3, 14, 10, 13, 16, 11, 6]. Apar-  (8eta,b(21,22))(y) —(geta, z1)({geta, x2)(y))
ticularly important model is thenacro tree transducefMTT) [4, (geta, e)(y) —y

7]. MTTs are a finite-state machine model to transform a tree where (getb, a(z1,72)) (y) — (getb, z1)((getb, z2) ()
each state (or a procedure in programming language terminology) .

is allowed to pass several extra arguments (cateimulating pa- (getb, b(z1,22)) (y) —item({copy,z1)(),
rameters in addition to the input tree. This facility to carry around (getb, z1) ({getb, x2)(v)))
multiple intermediate results is proved to be useful for various pur- (getb, e)(y) —y

poses and indeed increase the expressive power compare to top-

down tree transducers lacking this facility [4]. However, MTTs (copy, a(z1,x2))() —a(({copy,z1)(), (copy, z2)())
have the asymmetry that, while each state can propagate multiple (copy, b(z1, z2))() —b({copy, z1)(), {copy, z2)())
trees in a top-down manner, it cannot do it in a bottom-up manner (copy, e)() —e

since it is still restricted to return only a single tree and such tree
cannot be decomposed once created. We use the form(f,¢)(t1,...,t,) for procedure definitions and
calls wheret is the first argument (the recursion argument, i.e.,
the input tree) and, . . ., t,, the remainder (i.e., the accumulating
parameters). We adopt this notation to emphasize the special role of
the first argument. The procedueta is intended to collect all the
first subtrees o& nodes in the input tree. This procedure takes an
extra parameter for holding the first subtreesafodes that have
been collected so far. Each rule works as follows. If the input tree
is ana node, we recursively cafjeta on the subtrees, andz; to

yield the result from these subtrees combined with the collections
of the passed parametgy we then augment the collection, in an
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item node, with the first subtree; (more precisely, its copy via e to approximately represent transformations in some higher-

the copy procedure defined in the bottom; MTTs have no way to level language (e.g., XSLT [1]) that allow complicated forms in
directly return the input tree) to yield an answer to the original call. conditional expressions; such approximation may be useful for
The second rule fogeta on ab node is similar except that we do performing typechecking, cf. [10, 11, 6];

not construct aitem node. In the case that the input is a leaf, we

. ) e to encode queries that returrsetof trees.
directly return the passed accumulating parameter. The procedure q

getb is analogous. As already mentioned, in the nondeterministic case with call-
The above MTT traverses the input tree twice, once for collect- by-value semantics, mr-MTTs are strictly more expressive than
ing the first subtrees af's and another for collecting those b. MTTs. Intuitively, consider an mr-MTT that is similar to the one

It is not possible to combine the traversals to a single one since, above, but has nondeterministic choices at each node and, depend-
as stated above, procedures in MTTs cannot return multiple sepa-ing on which choice to take, we put a different thing in the lists. We
rate trees simultaneously. We may attempt to combine the two lists cannot simply split the procedure to two since we would not nec-
of a’s andb’s in a temporary node and return it, as in the usual essarily take the same choice at a given node in the two separate
practice of functional programming. But then, we cannot add later traversals. In the formal proof given in Section 4.2, we will exhibit
morea’s or b’s to the appropriate list since we cannot decompose a counterexample inspired by this observation and show that this
the temporary node back to the two list (otherwise the procedures can be expressed by an mr-MTT but not an MTT. The proof of
would not be defined by induction on the first argument). This re- the inexpressibility is a rather long and involved one, which is a
striction is rather awkward. For example, if the two traversals have natural consequence of the current situation where there is no stan-
a common complex condition, then separating the procedures fordard proof technique for tree transducers analogous to Pumping
these traversals may require us to duplicate the same code for thd-emma in automata theory [8] (except for the height property, i.e.,
condition. the maximal increase of tree heights from input to output, cf. [4],

It is thus natural to extend MTTs with the capability to return  which fails in our case since MTTs and mr-MTTs obviously have
multiple return values. More precisely, our extension is to allow a the same height property).

rocedure to return a tuple of trees and the elements of such a tuple . . .
P i P Structure The rest of the paper is organized as follows. We first

iabl I i iatel h - e X I .
to be bound to variables by a et construct (immediately after the define MTTs, giving their known properties, in Section 2, and then

return). The following expresses the same transformation as above™ ~ . . X X
by an mr-MTT (eliding thecopy procedure for brevity). define mr-MTTs in Section 3. In Section 4, we formally compare

the expressivenesses of MTTs and mr-MTTs in the deterministic
and the nondeterministic cases. Section 5 touches upon possible

(main, z)() — (get, z)(e, e) future directions.
(get,a(w1,22)) (Y1, y2) — let (21, 22) = (get, x2)(y1,y2) In
let (23, z4) = (get, x1) (21, 22) in 2. Preliminaries
(item({copy, 71)(), 23), 24) This section gives the definition of (single-return) MTTs and their
_ . known properties.
(get, b(w1, 22)) (y1,y2) — l€t (21, 22) = (get, 22)(y1, 12) n A setY with a mappingrank : ¥ — N is called aranked set
let (23, 24) = (get, z1) (21, 22) in We sometimes annotate each element 3 with its rank by a
(23, item({copy, 1)(), 24)) superscript liker* to indicate thatank(o) = k. Theproductof a

ranked setd and a sef3 is a ranked sett x B = {(a,b)* | a* €
(get, ) (y1,y2) — (y1,92) A,b € B}. Note that the rank of first componen{t(is in)he|rited. The

This time, we make only a single traversal on the input by setT% of treest over a ranked seX is defined by the following
carrying around two lists at the same time, using two accumulating BNF:
parameters and two return values. The rules work in the natural way ok %
that, if the input tree is aa node, then we augment the first list with tu=ot(ty,.. . te) (07 €3)
anitem node, and so on. In the rest of this paper, we sometimes omit parentheses forrank-
and ranki symbols and write them like strings. For example, we
write abed instead ofa(b(c(d()))).

Whenz?,...,22 € ¥ andt, ti,....t,, € Ts, (simulta-
neous) substitution ofy, ..., t,, for z1,..., 2., in ¢t is written
tlz1/t1,. .., Tm/tm] (Or sometimes written[z/£] for brevity) and
é;lefined to be a tree where every occurrenceofi = 1,...,m)
in ¢ is replaced by the corresponding

Expressiveness A natural question that arises here is: what is
the exact relationship between MTTs and mr-MTTs in terms of
expressiveness? In the previous section, we have shown an MTT
and an mr-MTT that perform exactly the same transformation.
These examples would suggest that MTTs and mr-MTTs might
have equal expressiveness. As stated already, it is indeed true in th
deterministic case. The formal proof will be shown in Section 4.1,
but the intuition is that each procedure in an mr-MTT returning a Definition 1. Assume a se = {x1,22,...} of input variables
k-tuple of trees can be split foprocedures each returning a single and a sety = {y1,%2, ...} of (accumulating) parameters both of
tree (generalizing our example above). rank-0. A macro tree transducer (MTT) is a tul@, qo, 3, A, R),
We did not stop our investigation at the deterministic case, but whereQ, =, andA are finite ranked sets. We c#}l a set of states,
further proceeded to the nondeterministic case. One might ask why ¢, € Q an initial state of rank OF an input alphabet) an output
we should care about the nondeterministic case from the first place,alphabet, and? a finite set of translation rules of the form
given the situation where many practical tree transformations seem e m
to be deterministic. Nondeterminism is in fact quite useful or even (@ 0™ (@1, zm)) (Y1, - yk) =7

required in some areas, namely, where a right hand side is a tree fromTayoxx)uy, that
* to encode transformations or queries that are nondeterministicis, either a node construction”(r1,...,rx), a procedure call
by design; for example, the XDuce language for XML process- (¢*, z)(r1, ..., %), or an accumulating parametewherers , . . ., 7

ing has regular expression pattern matching whose semanticsthemselves are fromi'aygxx)uy. We call the left hand side
on choices is nondeterministic [9]; of a rule arule head We require that any MTT is well-formed,



that is, all free variables in the right hand side of each rule are
bound by the rule head. Given an MT®, g, X, A, R), a state

q € Q is deterministicif there exists at most one rule of the form
(g,0(...))(...) = rin R for eacho € X and the whole MTT is
deterministic if all its states are deterministic.

Below, we will define the semantics of MTTs by a rewriting
relation over intermediate states called sentential forms. Intuitively,
a sentential form is an output tree that contains procedure call
forms (¢", 0™ (t1,...,tm))(s1, ..., sk), i.e., application of* to
the input trees™ (t1, . . ., tm) € Tx with accumulating parameters
s1,...,8 € Ta. In each rewriting step, we find a context that
holds such a procedure call and expand the call to the right hand
side of a matching rule with appropriate substitution.

Definition 2. Let M = (Q, g0, 2, A, R) be an MTT. We define a
setAy = AU(Q x Tx) and call trees ifTy ,, sentential formsf
M. (We omit the subscript/ when it is clear.)

Definition 3. For a ranked s€t and arankd symbolJ £ ¥, atree
C € Txymy that contains exactly one occurrencelofis called
one-holeX-context We writeC[s] as a shorthand fa¢[(1/s].

We give acall-by-value(also known asO-modg semantics of
MTTs. The definition is done by interpreting the translation rules
of MTTs as rewriting rules over sentential forms.

Definition 4. Let M = (Q, qo, 2, A, R) be an MTT, ands, v’ €
Ty. The binary “small-step evaluation” relatien=- v’ is defined
when there is a rule iR of the form

,xm)>(y1, cee 7y’€) -

and there are a one-halecontextC, input treess, . . .
and output trees,, . .., t., € Ta, such that

u=C[g,o(t1,...,tm))(s1,-..

(qk,om(xl, e

,Sm € Ts,

+Sk)]
and
w =Clrlz1/ts, ..., Tm/tm,Y1/51,. .., Ur/5k]].

That is, whenu has a context in which a procedure call appears,
this call can be expanded to the right hand side of a matching
rule with the subtrees,, .. ., t,, substituted for the input variables
and the arguments, . . ., si for the accumulating parameters. As
usual, the derivation relatios-* is defined as a reflexive, transitive
closure of=-. We say thav is derivable from: whenu =* v and
defineu| = {s € Ta | v =" s}. Two sentential forms andv

are equivalent, writtem = v, whenu| = v|.

Definition 5. Let M = (Q, qo0, X, A, R) be an MTT, the transla-
tion 7(M) of M is defined af(¢,s) € Tx x Ta | s € {qo,t)()|}.
When a relationf is equal tor (M), we say thatf is realizedby
M.

In the subsequent proofs, it is actually convenient to extend the
above-defined derivation relation from sentential forms to contexts.

By using the derivation relation over contexts, the following
known propositions hold. Intuitively, when a sentential form can
be split to a context and subtrees Tia, performing derivation
from the whole sentential form is equivalent to performing first
derivation from the context and then substitution of the subtrees.
We will repeatedly use these propositions in the sequel.

Prop 1 (Lemma 3.19 of [4]) LetC be aA-n-contextand, ..., s, €
Ta.Then we hav€|si,...,sn]l = {D[s1,...,sx] | D €C|}

Prop 2 (Lemma5.2 of [4]) LetC be aA-n-contextand-,...,r, €
Ta. If (1) C contains exactly one occurrence for eachtyf . .., 0,
or (2) C contains at least one occurrence for eactiaf, ...,
and the MTT is deterministic, then we hadé,...,r.]| =
{D[s1,...,8:] | D €Cl,si €1il}

3. Multi-return macro tree transducers

In this section, we formally define multi-return macro tree trans-
ducers and translations realized by them.

The essential addition to mr-MTTs with respectto MTTs is con-
struction and deconstruction (via let expressions) of tuples of return
values. However, for simplicity, we adopt a style similar to an A-
Normal Form [5] inA-calculus so that we disallow nesting of pro-
cedure calls, that is, every procedure call must appear immediately
as the bound expression of a let expression. In examples, though,
we sometimes use nested procedure calls, which should be read as
a short-hand for nested let forms. For instance,

let (21, 22) = (g1, 2)({g2, 2)()) i
({g3, 2)(21), (g4, ) (22))

is a short-hand for the following:

let 25 = {go, z)() in
1,7

)
let (21, 22) = (q1,z)(z5) in
let 25 = (g3, z)(21) in
let 24 = {qa,z)(22) in
(25, 24)

Definition 8. Assume a seZ of rank) temporary variables. A
multi-return macro tree transducer (mr-MTT) is a tuple of six
component§Q, qo, 2, A, D, R), where@, 3, and A are ranked
sets andD is a mapping of) — N. As before, we call) a set of
statesgo € @ an initial state of rank 0 an input alphabet, and

A an output alphabet. Since each state in an mr-MTT may return
multiple values, we represent the number of such return values,
calleddimensionby usingD. Then, R is a finite set of translation

rules of the form:
yEm ) Y1y Yk) = T

wherer € rhs”(@ . Rules like this form are calleg o-rules. Here,
the setrhs? of right-hand-sides in dimensiond € N is defined by

<qk7am(w17 s

Furthermore, it is also convenient to generalize contexts so as tothe following

contain multiple occurrences of several kinds of holes.

Definition 6. For aranked sef and rankd symbold]y, ..., O, &
¥, atreeC € Tyyo,,..0,y is called X-n-context We write
C[s1, ..., sn] asashorthand fa[0; /s1, ..., 00 /sn].

Thus, a one-holéi-context is aX-1-contextC that contains
exactly one occurrence &f; .

Definition 7. Let M = (@, o, %, A, R) be an MTT and rank-
0 symbolsOly,...,0, € A. Then, forC,C" € Tauo,,..., On}e
we write C = C’ when the relation holds in the extended MTT
M = (Q,q,%,AU{04,...,0,}, R). The relation =* C’
andC| are extended accordingly.

ra=01...0n (U1,...,uq)
Bu=let(z1,...,2p)) = (q'k,m>(u1, e,

whereuy,us, -+ € Tavyuz, 21,22,--- € Z andx € X. We
require that any mr-MTT is well-formed, that is, all free variables
in any subpart of the right hand side of each rule must be bound
in the surrounding expression (either in the rule head or in a let
binding). An mr-MTT is calleddeterministicif for every pair of

q € Q ando € X, there exists at most orgo-rule in R.

(n>0)

Uk) in

Below, we give a call-by-value semantics to mr-MTTs in a
similar way to the case of MTTs in the last section. That is, we first
define sentential forms of mr-MTTs and then translations realized



by mr-MTTs in terms of rewriting over sentential forms. Though, into d states returning single trees, and (2buld function that

we do not define contexts this time since the target of rewriting is turns an mr-MTT with all states returning single trees into an MTT.
always the procedure call that appears in the very first let expressionThen, we formally prove that these two operations do not change
of a given sentential form. the translation realized.

. Before that, however, we first need the technical lemma below.
E;f}?;;ogf Zénl_tgtnﬁg | f_or(n?s;qgf i}’ﬁ]’ (fr#g 2] sbigrzna?:_d'\c/la;li—:égrl])?/ In the definition of derivations f(_)r mr-MTTs_in the p_revious sec-
the following tion, a Iet-bounq procedure .caII ina sentential form is repllaced by

the right hand side of one of its defining rules (with appropriate sub-
Ku=l1.. 0n (u1,. .., uq) stitution), and then this right hand side is subject to derivation. The
= let (z o) = (¢, ) (u wy) in lemma below states that the order between such replacement and
" by =D(g) E Ly Gk such derivation is interchangeable. That is, first fully evaluating the
wheret € Tx andui,us2, - € Tauz. (The subscriptM is procedure call alone and then replacing the let-bound variables with
omitted if it is clear.) Analogous to the definition of right-hand sides the resulting tuples will derive exactly the same outputs. Note that
of rules, we require that any sentential form is well-formed. That is, this lemma corresponds to Prop 2 (1) for normal MTTs. Although
any variable contained in a sentential form must be in scope from awe prove and use the lemma only for deterministic mr-MTTs in

surrounding let bindings. this paper, it can be shown that it also holds for nondeterministic
Definition 10. Let M = (Q, g0, %, A, R, D) be an mr-MTT and case.
t,t’ € K. The binary relatiort = t' holds if¢ has the form Lemma 1. Let M = (Q, qo, %, A, R, D) be a deterministic mr-

MTT andx be a sentential form. Then the following equation holds.
(let (z1,...,24) = (g, t)(s1,...,8K) INK)|=
Utklz1/ur, -, 2a/uall

let (z1,...,2a) = (¢", 0™ (t1, ..., tm))(s1,...,5%) iNK
and there is a rule il of the form

<qkaa—m(x17' i axm»(yla .- 7yk) =l (Ul,- .- aud)

whered = D(q) andt’ has the form (w1, ua) € (g, t)(s1,. ., sx)l}
- lnr Proof. The proof is done by induction on the structure of input trees
where t. We first consider the case whers a leaf noder (). If there is no
, ' rule ¢, o-rule in R, then the both sides are empty and thus equal.
Ii=blzi/tr, .., xm/tm,y1 /51, yk/sk] (i=1,...,n) Otherwise, sinceV/ is deterministic, there is a uniqug o-rule.
u =iy /sty ue/sk] (G=1,...,d) Here, since is a leaf node, the rule cannot contain procedure calls.
p , , Thus the rule must have a forfny, ..., r4). So we have:
K = K[z1/u1, ..., zd/ug).

let(z1,...,24) = {(q,t)(s1,...,8k) IN K
Here, we adopt the standard convention that substitution auto- (let (=2 a) = {a.5)(s1 K) )\

matically avoids inappropriate variable capture by silently per- =(klz1/r1, .- za/ra))l
f_orming a-conversion. As befp_re, we define the derivation rela- wherer; = r;[y1/s1, ..., Yd/sd]
tion =" as a reflexive, transitive closure e$ and say thats _ , ,
is derivable fromt whent =* s. We then defing| = {s € But here, since we havf(r1, . .. ’T.i)} = (g, t)(s1,...,s8)], we
Td | ¢t =* s} whered is the dimension of (note that the ~ Can conclude that this is equal to:
final results can be tuples of trees). Technically, the procedure c gt
call form (¢*,t)(s1,...,sk) is not a sentential form in an mr- U{K[Zl/ul’ za/ualll (wa, . ua) € (g, )51, 51}
MTT, but for convenience we defing”, t)(s1, . .., sx)| as the set We next consider the case wheis a branch node(t1, . . ., tm).
(let(z1,...,2p(q) = (q",t)(s1,...,sK)in (z1,.. -, ZD(q)))!- The case when ng, o-rule is in R is similar to the case of leaf
. node. Both sides become empty and thus equal. Otherwise, there is

Definition 11. Let M = (Q.qo, %, A, R, DD)( b? an mr-MTT, A a uniqueg, o-rule of the formg, - - - 8, (r1, ..., 74) Then
relationT (M) is defined aq (¢, s) € Ts x Tx %’ | s € {qo,t)()| _
}. When a relatiory is equal tor(M), f is said to beealizedby (let (z1,...,za) = (g, )(s1,- -, 5) N w)]
M. =(B1 -+ Bur’)|

. . Whereﬂ{- = ﬂi[ml/tl,“.7:cm/tm,y1/sl,...,yk/sk], K =
4. Expressiveness comparison Klz1/rl, ..., za/7h), andri = ri[yi/s1,...,yk/sk]- Let 31 be

When the dimension of its initial state is an mr-MTT realizes letz51 = (q1,t:,)(---) in. By induction hypothesis, we can first
a translation of single trees to single trees. In this section, we evaluate the procedure call j#h first, and replace the variables

compare the expressive power of such mr-MTTs to normal MTTs. z1, ..., 241 Occurring in the rest by the result. Thus we have
Since mr-MTTs are obviously at least as expressive as MTTs, we (B, - Bor')]
concentrate on whether the converse holds. ! "

In the deterministic case, it is shown that returning multiple = B2+ Bur") =51 /up )Ll upr € (qu, tan) (- )1}
trees will not change the expressiveness. In the nondeterministic . . R
case, we prove that the multi-return capability does increase the@nd, by expanding the remaining calig, ..., 3, similarly, we
expressive power, by exhibiting an example of transformation that have:
can be written by an mr-MTT but not by an MTT. = U{“, [231/uB1] - - - [25n/upn]l|
4.1 The deterministic case ug1 € {(q1,ti)(--- ),
In order to show that a deterministic MTT can always be con- ugz € (q2,tiy) (- )[z51 /umll,

structed from any deterministic mr-MTT, we define two functions:
(1) asplit function that divides a statgreturningd-tuples of trees



UGn € (qn,tin) (- )[2z51/up1] -+ [28n—1/upn—-1]l} We next consider the case wheis a branch node (¢1, . . ., tm).
Again, if there is nog, o-rule, both sides of the equation are
empty and thus equal. Otherwise, there is a unigue-rule x,
(q,t)(s1,...,86)= and what we have to show is{z/7, §/3]|= split, (v)[Z/t,7/5]|
{0, T 5 JuBa] -+ [25n /U] | X e X splitp ) (K)[Z/1, gj/§‘]_l. We prove this by an inner induc-
Wi € (gt )L, tion on the structure af, showing that the following equation holds

for any &, t, 7, 5, Z anda.
upz € (g2, t2)(- -+ )[z51 /g1l Wl T /5, 2=
split (1) [Z/1, §/5, Z/ull % -+ x splitp, (k) [Z/1,5/5, Z/i]]

On the other hand, a similar reasoning leads us to:

Uin € (qnstn) (- - )[261/ugi] - (201 /usr-1]l} The base case, which is the case whehas no let bindings, is
So by rewriting(g, t)(s1, ..., sx) | in the right-hand side of the proved in the same way as the case of a leaf node. The case when
lemma statement according to the above equation, the questionit contains let bindings, i.e., has the following form
boils down to the following equation let (z1, ..., 2q) = (p, ;) (11, ..., 7)) in &'
K2/ /0ih] = K[Z/ (7[5 /5))] whered = D(p), the left hand side of the equation becomes

which holds by the associativity of substitutions. O (let (21, ..., 2a) = (p t) (), ) in &)

Now we define theplit operation on mr-MTTs and prove that  wherer; = r;[y1/s1, . . . yx/sk] foreachi ands” = x'[z1/t1, .

ey

it preserves their meanings. T [tm, y1/51, - .. Yr/sk]. Thisis, by Lemma 1, equivalent to:
W define & new mMTERGR(LL) — (0 5. AL D) a8 Ut Gafss - 2afudl|

follows. (1,5 uq) € (0, t5)(rL, .-, )L}

Q = U{{qm, ., aD()} | 4 € Q} By outer induction hypothesis, this is equivalent to:

90 = qop] U{K"[zl/ul, ooy za/uall |

R' = {{qu, o1, s xm)) (Y1, -, yx) — split;(r) | ur € (pup ) (rh, Tl

(<Q7o—(m17'"7:Cm)>(y15"'7yk) 4)"') ER1<:< D(q)}

ud € (Po)) ) (11,1}
D’ =g~ 1 (constantfunction returning 1)

o _ Here, eachu; and (py;,t;)(r1, ..., ) do not contain variables.
wheresplit, is defined as follows: Thus, the substitution applled #4 can be distributed, and we have
split, ((u1, ..., uq)) = wi an equivalent set
split, (let (zl,... n) = (¢, x)(u1,...,ugx) iNK) = U{:‘i”[zl/ula---,zd/ud]l |
et 21 = (g, @) (- ) € G )7 )L
: uz € (p2), t5)(rh, ... )z /wall, -
let z, = (qpn), ) (u1, ..., u) in split; (k) uq € <P[d]atj>(7“l17 )z ua] - [zao fuaa]l}
Note that thesplit operation preserves the determinism of the Which is, by inner induction hypothesis, equivalent to
input transducen/. U{splltl [21/u1, o zafud)l
Lemma 2. Let M = (Q, qo, %, A, R, D) be a deterministic mr- lit 1"
MTT. Then we have(M) = r(split(M)). w X splitp g (k7)1 /s -, Za/uall |
Broof. Wi ot h statec O and any trees € T U1€<p[117tj>(ri7---,v"i)l,
roof. We prove that for each statec @ and any treeg € T+, /
s1,...,s, € Ta, the following equation holds, applying which to uz € (piay, £5) (1, - ’Tl/)[zl/ulu’ ’
qo Yields7(M) = 7(split(M)). ua € {paj, t;)(r1, ..., ) [z1/u1] - [2a—1/wa—1]l}
(g, t)(s1,...,sK)l= Sincesplit(M) is deterministic, we have an equivalent set
(anps t)(s1, -5 sk)L X X {qD(g)) ) (815, 8)] U{Sp“tl( NeJu, - . ., za)udll |

The proof is done by induction on input treesWe first consider /
the case when is a leaf noder(). If there is nog, o-rule in M, w € (pray, t) (1)l
there is nogy;), o-rule for everyi, too. Hence, both sides of the u2 € (prg )(r{, oDz uall,
equation aré) and thus equal. Otherwise, sint€is deterministic, c ’ o
there is a unique, o-rule. Sinces is a leaf, the rule cannot contain ua € ppapy ) (1, )l fua] e fuaall}
procedure calls. So the rule has the fofm, . .., 7p(,)) for some XX
T1,...,7D(q) € Tauy. The correspondingy;, o-rule insplit(M) split &Yz Jua, - za)u
is r;. Thus, both sides of the equation denote the equivalent set U{ Plitp(q) (7)1 1// ! . a/uall |
{(rh, ., r'D(g) } Wherer; = ri[yi /s1, ..., yx/sk]. Note that the u1 € {ppp, i) (ry, -, 1),
determinacy is critically used here. That is,@l|, o-rules selected us € (pag, t5)(rh, . )z Jua)l, -

correspond to the samgeo-rule in the original mr-MTT, since such , ,
rule is unique. ug € (pray, t5)(r1s -, )21 /ua] - - [za—1/ua-1]l}



This is, by Lemma 1 and the definition gflit,, equivalent to is asubtree of, foranyZ = {z1,...,2»}, andua, ..., u, € Ta,

. T e o . T e the following holds:
split, () (/L. 5/5, Z/]L x -+ x split ) (w)[7/7, /5, 2/ ? aliar bl 21
as desired. . klz/u M._ “'. K, Z)|Z/ U] build(M) ‘ .
The proof is done by induction on the number of lets in sentential
forms. Whenx does not have any let bindings, it is thate Ta.

So both sides derives only a tregthus are equal. If rule has the
form:

As a remark, we mention here without proof, that for a nonde-
terministic mr-MTT M, we haver (M) C 7(split(M)).

Next, we define théuild operation that converts an mr-MTT to , o,
an MTT. Basically, it simply rewrites let = ey in e by e2[2/e1] let2" = (g, ti)(s1,...,8k) INK
and the determinacy assures the equivalence. However, there is Ve have
subtle difference in the semantics. Namely, since a deterministic >
mr-MTT could in fact be non-total (i.e., it may have goo-rule allm
for someq ando), if it binds a variablez to a procedure call that :(Ietz ={(q,ti)(s1,...,8%) N &) [Z/T) |0
yields no result and the variable is not mentioned after the binding, o o/
then a wrongly built MTT might eliminate the call and yield some — Ut (/@)L V| ' € (g, tad(sa 2/, sel2/a) e}
result. To deal with this subtlety, we use an extra trick to ensure by Lemma 1

such elimination never to happen. L, o
o PP :U{bwld k', Z U{2"})[Z/4][2 /u] buitacan)
Definition 13. Let M = (Q,qo,%, A, R, D) be an mr-MTT

such thatD is a constant function returning We define an MTT | u' € (g, ti)(s1[2/a), - .., sk[Z/@)) Lbuiacany }
build(M) = (Q', g0, %, A, R') as follows. by the hypotheses of both the inner and the outer induction
Q' =QU{dgu} =build(x'[2"/Du], Z U {Th })[2/1]
R ={{g,0(z1,...,2m))(¥1,...,2x) — build(r, D) | g, t:)(s1[2/4], - - -, sk[Z/4])]Lbuila(ar)
(g, 0(x1,...,2m))(y1,...,2x) — 1) € R} by Prop 2 (by definitionbuild(- - - , Z U {{1,}) has at least
U{{qia, 0™ (1, ., 2m))(y1,y2) — 12 | e™ € T} one occurrence dfl; andbuild(M) is deterministic)
where =build(x, Z)[Z/1]|puia(nsy DY commuting substitutions
build(t, {z1, ..., zn}) as desired. O
= (qid, 1) (21, (qid, 1) (- -+ , {Qid, T1) (2, ) - -+ )) Again, as a remark, we ha_lve(M_) - r(build(M_)) for_ a
build(let z — . inr v nondeterministic mr-MTTV/ of dimension 1. The proof is omitted.
uild(let 2 ) (@, 2)(s1, €)inr, V) Now, by Lemma 2 and 3, we have the following proposition as
= build(r, VU {2})[2/{(¢, ) (51, - . -, Sk)] desired.
Note that thebuild operation preserves the determinism of the prop 3. For any deterministic mr-MTT, there effectively exists a
input transducen/. deterministic MTT that realizes the same translation.

The extra statey;q ignores the input and the first parameter

and simply returns the second parameter; this state is used in the4.2 The nondeterministic case
internally definedbuild function. The internabuild function takes
aright hand side of an mr-MTT and its possible free variables, and
returns a right hand side of an MTT. In the first rulekafild, for
each variable;, we callg;4 with the first argument;. Since each
such variable will be replaced with the corresponding procedure
call by the second rule, this treatment makes sure that all procedure  (qo, s())() — let (z1, z2) = (g1, z)(A(E)) in root(a(z1), 22)

When nondeterministic choices are used, $hBt operation on

an mr-MTT does not retain the realized translation. Consider the
following mr-MTT with the input alphabef{s’, z°}, the output
alphabef{root?,a',b', e A' B' E°}, and the set of rules:

calls that are made in the original mr-MTT are indeed made inthe (4, s(z))() — let (21, 22) = (q1, z)(B(E)) in root(b(z1), 22)
converted MTT.
(0,2)() — Toot(e,E)

Lemma 3. Let M = (Q, qo, %, A, R, D) be a deterministic mr- let _ A .
MTT such thatD is a constant function returning. Then the MTT {a1,8(2))(y2) — let(z1, 22) = (g1, ) (A(y2)) in (a(21), 22)
build(M) realizes the same translation as. (q1,5(x))(y2) — let (21, 22) = (g1, 2)(B(y2)) In (b(21), 22)

(q1,2)(y2) — (e,2)
Proof. We prove the following for any € @, ¢t € 7%, and This mr-MTT nondeterministically translates a strisg- - - ssz of
s1,. -, 8, € Ta by induction on the structure on input trefes lengthn to aroot node holding two strings of the same length

— , n. The first string in the output consists of symbals&ndb and
(@:8) (1, s)bar= (g, ) (s, 80 bowiaca) terminates bye. The second consists @f andB and terminates

If ¢ is a leafo(), then ag, o-rule (1) does not exist for either by E. Moreover, the second string is always the reverse of the
side, or (2) uniquely exists for both sides in exactly the same form. first, ignoring the case and the leaf symbeldt E). Note that if
In either case, obviously both sides become equal. we split the procedure; returning pairs of trees into two single-

If tis a brancho(ty,...,tm), it is either that (1) ag,o- return procedures, we have a different translation realized. That is,
rule does not exist for either side, or (2) uniquely exists for both although the split version still generates trees holding two strings
sides, of the formr andbuild(r, §). In the non-existing case, both  (one with symbols andb, and the other witht andB), the two
sides become empty and thus equal. For the case that the correstrings, this time, are not necessarily related (not always the reverse
sponding rules exist, what we have to proverile/t, 77/5] | sr= of each other).
build(r, 0)[Z/%, /3] L buila(ary- We prove this by showing that for In fact, not only the split version of the above mr-MTT lauty
any sentential forna of M such that each input tree containedkin MTT cannot realize the translation realized by the above mr-MTT.



We refer to this translation bywist throughout this paper. More
k

precisely, abbreviating for mz we define
twist = {(n, root(t,revUp(t))) | t € (alb)"e}

where:
revUp’(z,E())

revUp’(a(z) revUp’(z, A(y))

revUp’ (b(z) revUp’ (z, B(y))

revUp’(e(),y) =y

Now, the goal of the rest of this section is to prove the following

proposition, which takeswist as a witness that nondeterministic
mr-MTTSs are strictly more expressive than MTTSs.

revUp(z) =

' Y)
' Y)

Prop 4. No macro tree transducer realizesist.

The outline of the proof is as follows. We first suppose that an
MTT realizestwist and derive a contradiction. How we derive it is
to show that the MTT that supposedly realizesst yields a set of

outputs whose size has a polynomial upper bound with respect to

the length of the input string, while the sizewfist’s output set is
actually exponential.
However, giving this upper bound directly is difficult since too

many possibilities need to be considered for the supposed MTT. For

this reason, we introduce two restricted forms, calledk normal
form and (strong) normal formand use these as follows. Given a

Proof. Choose anyD € C|. By Prop 2, it must be the case that
Dls] € C[r]|. SinceC[r]|C O ands € Ta\{root}, the contextD
must be either in the form

¢ that does not contain ariy,
.root(...Dl... 7...)’()r
.rOOt("' 7|:|1)

In the first case, it is trivial that, for ali’ € r|, we haveD[s'] =

D = Dis]. In the second case, by Prop 1, for all € r | we
haveD[s'] € O. So hererevUp(s’) must be equal teevUp(s).
SincerevUp is one-to-one mapping, this implies = s, and thus
we concludeD[s’] = D|s]. The third case is similar to the second
case, and again we ha#®s'] = D[s] for all s’ € r|. So in any
cases, we hav®[s'] = D[s] forall D € C| ands’ € r|. So
Clrll={D[s'1 | DecCl,s erl} ={D[s] | DeCl} =
C[s]l O

By using the above lemma, we show that, after applying this
replacement for all such subtreesis well as replacing all illegit-
imate trees (like aoot containing aroot or ana containing a
root) with a legitimate but nonce tree() in the proof), we will
obtain a weak normal form.

Lemma 5. Supposé = (Q, qo, 2, A, R) to be an MTT realizing
twist. For anyr € Tx wheref) C r| C O for somen € Tk, there

sentential form that produces the desired outputs (in particular, the exists a treews (r) € W} such thatwy (r) = r.

one to start with, i.e., the initial procedure applied to an inputve
will convert it to a weak normal form, and then to a set of normal

forms. We can show that, in the first conversion, the set of outputs I
is preserved and, in the second conversion, the union set of outputs” "ePeatedly,
is either preserved or enlarged. We then give an upper bound for

Proof. To obtainws (), we first apply the following translation to
until subtrees satisfying the condition are not found.

the size of the final union set, which is also an upper bound for the ¢ Find a subtree. such thatr. |¢ Or U Ta\ {re0t}- If found,

original one.

Below, without loss of generality, we consider only MTTs
with input alphabet> = {s' z°} and output alphabef =
{root? a' b’ e A' B' E°}. Also, we write O;, to denote the
output language ofwist from a particular inputn, i.e., Or =
{root(t,revUp(t)) | t € (alb)"e}, andO to denote the output
language from any input, i.eQ = J,,~, Ox-

Conversion to weak normal form As in the following definition,

a weak normal form is a sentential form whose each subtree is e Find a subtree. = (g, m)(r1, ...

either a desired output)), a tree with naroot (Ta\{root}), OF

replacer. in r by e().

Since suchr.s will never be contained in the final output, i.e., there
is no contextD € C | containing an occurrence @fl;, where
r = C[r.] andC is a one-hole context. So replacing it by a nonce
subtreee() still yields an equivalent sentential form.

Next, we repeatedly apply the following translation.

,rx) of r such that, =~
5 € Ta\ {root} - If found, replacer. in r by s.

a procedure call where its arguments are sentential forms and that

produces some and only desired outputs.

Definition 14. Let M = (@, qo, X, A, R) be an MTT realizing
twist, andn € Tx. We define the set ofveak normal forms
WZ C Ty (recall A = AU (Q x Tx)) as the minimum set
satisfying the following conditions:

® On UTA\{root} © WX

ev € WEifv = (¢* m)(vi,...

To show that a sentential form yielding only desired outputs
can be converted to an equivalent weak normal form, the following
lemma is crucial. Intuitively, this states that, when we know that
such a sentential form contains a subtréleat derives a treg with
noroot, we do not have to consider other derivations starting from
the subtree, that is, replacing the subtreeby its specific result
will not change the set of outputs from the whole sentential form.

Lemma 4. Supposé/ = (@, qo, X, A, R) to be an MTT realizing
twist. LetC be a one-holé\-context and- be a tree ifl’y, such that
C[r]l € O andr =" s wheres € Ta\{root}- ThENC[r] = C[s].

,vr) andwvr, ..., vp € WY

Since one iteration of this translation decreases the number of
Q x Tx, nodes inr, this process terminates. By Lemma 4, the result
of this translation is equivalent ta

Finally, we repeatedly apply the following translation.

e Find a subtree. = (g, m)(r1,...,r) of r such that. is an
descendant of some node of the fofifa- - ) whered € A. If
found, replacer. in r by e().

At this stage after the preceding two translation, it must be that
re. |C Ogs. Again, suchr.s will never be contained in the final
output. So replacing it by() still yields an equivalent sentential
form.

After these three translations, each subtree of form =
(g,m)(---) does not appear belod(- - - ) nodes, and. | C Os.
Also for each subtree of form. = §(---), we haver. |C
On U Ta\{root}- Also by Prop 2,r. |# 0 for all subtrees. of
7, sincer|# (). Thus the translated tree(r) is now contained in
Wx. O



Conversion to normal form As in the following definition, a e v]C | H{ul] u € No(v)} U Ny (v)
normal form is a sentential form that has a unique procedure call e |Ng(v)| < the number of) x T nodes inv
at the root whose each argument is either a tree withawa or a e [Ny (v)| < the number of maximahk nodes inv

dummy tree and that yields only desired outputs. ) )
Here, amaximal\ node means a node that is labeled by an element

Definition 15. Let M be an MTT realizingwist, andn € Tx. We of A and no symbol of occurs further up irv.
define the set ofiormal formsNy C Wy as
NR={s|s=(g",m)(s1,...,5x), ¢" €Qm €T, Proof. We takeN¢ and Ny as follows:
S; € {dummy"} @] TA\{root}y 0 g_ Slg Oﬁ} NQ(U) = {Rvs [dummyn, s ,dummyn] |
where: vs = (¢",m)(v1,...,vx) is a subtree ob}

e —— Nv (v) = {vs | vs is a maximal subtree of labeled byA}
dummy,, = root(a---ae,A---AE)
(We take here a dummy tree as the above, but it can be any tree ifwhereR.,, is aA-k-context defined as follows:
itisin Ox.)

Before showing that a weak normal form can be converted to ) )
a set of normal forms, we give the following lemma. Intuitively, wherea; = 0; if § C vi|C Og, ora; = v; otherwise
this states that if a sentential form that derives only desired outputs |ntuitively, R, is a context obtained from, by opening holes at
can be split to a context with several holes and desired output treesthe position of the children that generade trees. The size condi-
then the context itself derives a hole or a desired output tree without tjons andNv (v) C Ta immediately follow from the definition of
using any hole. (The lemma holds for not only weak normal forms N, and Ny, .

Ro, = (¢, m)(an, ..., ax)

but any sentential forms.) Sincev € WJ, every subtreev, of v that has the form
Lemma 6. Supposé/ = (Q, qo, X, A, R) tobe an MTT realizing  (¢",m)(v1, ..., vx), it is thatvs |C On. So by Lemma 6 and
twist, and7 € Tk. LetC be aA-c-context such that[s1, . . . , s]| Prop 2, we haveR,.| C {0hi,...,0x} U Os. Thus, for all
C O forsomesy, ..., s. € On. ThenC|C {00;,...,0.} U Op. u = Cy,[dummy,,, ..., dummy,] € Ng(v), it must be the case
u|C Og, which implies thatVg (v) C Ny.

Proof. Suppose @\ -contextD € C| suchtha®D ¢ {(J,,...,0:}U The inclusionv |C (J{ul] u € Ng(v)} U Nv(v) is proved
Osx. By the conditionC|[s1,...,sc] | C Os, it must be the case by induction on the structure af. Base case is the case when
D[s1, ..., sc] € On (by Prop 1). Since the root node of every tree v € Or U Ta\{roor}. Sincev |= {v} andv € Ny (v) in this
in O isroot andD ¢ {0, ...,0.} by the assumption, the root  case, the inclusion trivially holds. The essential case is wtisin
node ofD is root. Also by the assumptio® ¢ Og, for some the form(¢*, m) (v1, ..., vx) € WR wherevy, ..., vx € WZ and
1 < i < n, the hole; is a part ofD. So,D[s1, ..., s.] contains ) C vlC Os.
s; as a subtree. Hence, the trBégs,, . . ., s.] contains at least two e
root nodes, one at the root position and the other at the position of (g% m)(ve,. . or)l
s;. This impliesD[s1, .. ., sc] ¢ O, which is a contradiction. (] = {D[v],...,v] | D € Roul,vi € v;]} by Prop 2

Conversion from a weak normal form to a set of normal forms < {P[v1, - .-, v] |
works as follows. Recall that a weak normal form is a tree of pro- D e {0,...,0:} U(Rul NOx),vi € v;|} by Lemma 6

cedure calls where each leaf is either fram or from Ta\ (root}

and each procedure call derives an output tree febmWe repeat = vl U--Uwkl U(Rw] NOx)

the following. If the root procedure call of a weak normal form € v1l U---Uwvigl URy[dummy,,, ..., dummy, ]|
has other procedure calls as arguments, e.g., by Prop 2. Sinc&l; does not contribute any outputs@y,
t=(g,m) (¢, m)(...),(¢",m")(...),s) substitution withdummy,, is safe.

(where the arguments are two calls and a tree flO;.0+}) then k

the previous lemma ensures that the root call results in either a C U(U{uu u € Ng(vi)} UNv (v:))U
result of one of the inner calls or a result of the root call without i=1

using the inner calls. Thus, Ry[dummy, ,...,dummy, ]| by IH

S {q ) (. )L Ulg”,m”) (- )L U((g, m) (01,02, 5)| NOx) C [ J{ull u € Ng(v)} U Ny (v) by definition of N and Ny
By repeating this “expansion” on the first and second clauses, the

result set of can be bounded by the union of clauses like the third
clause above, that is, the results of any procedure calls appearin

in ¢t without using any of its inner procedure call arguments (more ,, 1nq roughly goes as follows. First, we can consider a series of

precisely, in fact, any argument deriving an outpuiCi). Note sets of normal forms given as follows. We start with taking the set
that the results of each clause like the third clau_se above are further ¢ o -mal forms of the weak normal forms of the initial sentential
bounded by the call form where each hole is replaced by the ¢, " =4 -h normal form here has the forig 7)(. . ). We take a
dummy tree defined above, like one-step derivation. The resulting sentential form is not a normal
(g, m)(dummy, ,dummy, , s). form, and therefore we again take the set of normal forms of the
weak normal form of this. Each normal form must now have the
form (¢,n — 1)(...). By repeating this, we obtain + 1 sets of
normal forms.

Lemma 7. Supposé/ = (Q, qo, 2, A, R) to be an MTT realizing The above way of taking a series of sets of normal forms does
twist. Letn € T%. There are mapping®/o : W7 — P(NY) and not, however, ensure that the size of each set is polynomial and
Ny : W@ — P(Ta) such that, for any € Wg, might actually grow exponentially. For this reason, each time we

O

QPonnomiaI upper bound The proof for the polynomial upper

We take the set of all such forms constructed from the original weak
normal form as the set of the converted normal forms.



take a set of normal forms, we only choose the set of representa-Lemma 9. Supposé/ = (Q, qo, X, A, R) to be an MTT realizing
tives, namely, only one procedure call for each pair of state and twist. Letn € Tx. For all N C N}, there exist set&V’ and D
symbol. satisfying the following conditions:

The next lemma is crucial to justify this. It intuitively states that , A , .
if two normal forms are procedure calls with the same pair of state ¢ x ax%nujyn AnElrJr?tr)]etrhsEgL]k\( tlh a’?is((r:rér:ailn)g i,nvaherem is the
and input node, then no matter what arguments they have, the sets :

of trees produced by them aamostthe same where the size of the
difference is bounded by a constant not dependent.dBy using

e D C Oj such that|D| < K(K — 1)|N|, whereK is the
maximum rank of states iQ.

this, Lemma 9 will show that taking only the representatives leaves ° Uiml|m e N} =U{n'l|n" € N'}UD.

only a polynomial number of remainders.

Lemma 8. SupposeM = (Q,qo,%,A, R) to be an MTT re-
alizing twist. Letn € Tx. Lett = (¢*,m)(s1,...,sx) and
t' = (¢",m)(s1,...,s}) bothinN}. Then we have

[tL\t'] | < k(k—1)

Proof. Let C be a contextq®, m) (0, . ..
we have

ti\t'| ={D[s1,...,s] | D €CI}\{D[s1,.-
C {DI[s1,...,s5] | D €Cl,Dls1,...,s%] # D[st,...

We show the size of the last set is less than or equi{to— 1).
Forall D € C |, we haveD[s1,...,sx] € t|C Oz and

D[si,...,s:] € ' |C Oz. SoD must have either one of the
following forms:

,0k). Then by Prop 1,

8, | Decl}
5k}

1. D = [, for somei such thats; = s; = dummy,,.

2.D € On.

3. D = root(D:1[ds], sp) whereD; is a one-hole contexsp €
TA\ {root} @nd for some such thats;, s; € Ta\ {root}

4. D = root(sp, D1[0;]) whereD; is a one-hole contextp €
TA\ {root} @nd for some such thats;, s; € Ta\ {root}-

5. D = root(D:];], D2[;]) whereD; and D, are one-hole
contexts, for some, j such thati # j and s, s;, s;,sj €
TA\{root}-

In the case 1 and case 2, trivially[s1, . .., sx] = DI[sl,...,s}]
holds. In the case 3, by the definition@f,, it must be the case that
revUp(D1[s;]) = sp = revUp(D1[s}]). SincerevUp is a one-to-
one mapping, we can conclude = s;. Hence,D[sq, ..., sx] =
Dlst,...,s,]. The case 4 is similar.

In the case 5, by definition 005, the lengths ofD[s;],
Ds[s;], Dils;], and D2[s}] are all equal ton. So it must be
that length(s;) = length(s;) andlength(s;) = length(s}),
wherelength(s) denotes the number of rank-1 nodessinAlso
by the definition ofOr, we haverevUp(D1[s;]) = D2ls;] and
revUp(D1[s;]) = D2[s}]. So the reverse of; is being the prefix
of Do [Sj}.

Here, we consider two cases, namely: the dasgth(s;) +
length(s;) < n and the caséength(s;) + length(s;) > n. For
the former caseiength(s;) is less than or equal tength(D2).
Sos; must be the reverse of a prefix ;. Since exactly the same
thing holds fors;, we can conclude; = s;, and similarlys; = .
So in this case, again we hal¥si, . .., sx] = D[sl, ..., s}]. For
the latter case, sindength(s;) > length(D2), the contexD; is
being a prefix of the reversegf Thus,D- is uniquely determined
from s; and the length of;. By a similar argument, we also have
that D, is uniquely determined from; and the length ok;. So
for a specifici andy, the corresponding conte®? of the 5th form

is determined uniquely. Since the number of ways to choose two g, §% . and Sp becomes empty). Lef, =

numberg andj from1- - - kis k(k—1), the number of the contexts
D in this form is at mosk(k — 1).

Proof. Let rep : @Q x T — N be any partial function that
rep(q, m) returns an element df whose rootigq, m). We extend
rep to NY and takeN’ as{rep(n) | n € N}. Since the size of
the domain ofrep is less than or equal ton + 1)|Q|, we have
|IN'| < (n+ 1)|Q|. Here, we takeD as

D=J{nllne N}\|Jn'l|n' € N'}
:U{n“ n € N}\U{rep(n)l\ n € N}
CJ{(nl \rep(n)]) | n € N}

By Lemma 8, we havén]| \rep(n)| | < K(K — 1). Hence, the
size of D is less than or equal t& (K — 1)|N|. The last equation
in the statement is satisfied by the definition/of O

The following lemma then proves that, at each step, the set of
normal forms and the set of remainders produced there both have
polynomial sizes.

Lemma 10. SupposeV] = (Q, qo, %, A, R) to be an MTT real-
izing twist. Letn,m € Tx. S be a set of trees iiV; and each
member of5 has the form(g, m)(- - - ) for someg € Q. Then there
is setsSp, C On and Sy, € NF whose each member has the
form (g, m — 1)(- - - ) for someg € @Q, such that

e J{nl|ne S} CU{n'||n € Sn}USD

* [Sn/| < m|Q)

* [Spr| < (1+ K(K —1))H|S||R|
whereH is the maximum number of subtrees contained in the right
hand side of rules iR.

Proof. Let S, be{t | s = t,s € S}. Then we haveéS, | < |R||S],
and by definition of|, we have J{s|| s € S} = U{sl| s € Sz }.

Let Sw = {w(s) | s € Sz, s| # 0} wherew is the function
whose existence is proved in Lemma 5. Then we hawveC W7
and{J{sl| s € Sz} = U{sl| s € Sw} by the lemma. Since the
size|Sw| is less than or equal 4., |, we havelSw| < |S||R)|.

Let SQ = U{NQ(S) ‘ s € Sw} andSy = U{Nv(s) I S €
Sw } where Ng and Ny are the functions in Lemma 7. Then by
the lemma we hav8g C N3, Sy C Ta, andJ{sl| s € Sw} C
U{vll v € Sq} U Sy. The sizes of the sets is, by the lemma,
Sq| < H|S||R| and|Sv| < H|S||R].

Finally, letSy, andSp be the sets that the existence of them is
assured by Lemma 9 by taking, asN. Then by the lemma we
have|Sy/| < m|Q|, |Sp| < K(K — 1)H|S||R|, andUJ{v|| v €
So} =U{sl| s€ Sn'}USD.

Note that all procedure calls in trees$3 must have the form
(g,m —1)(---), by the definition of=, which also holds for trees
in Sy, by the construction of all preceding lemmata (for the case
m = 0, the setS, does not contain any procedure calls, and thus

(Sy N Oz) U
Sp. Then by Sy and Sp., all conditions in the statement are
satisfied. O

So by the argument above, we can conclude that the number

of context that satisfie®|[s1, ..., sx] # D[s1,...,s},] is at most
k(k — 1). This proves the lemma. O

Putting the preceding lemmata in this section altogether, we
obtain the following corollary, which poses a polynomial upper



bound on the size of the output language of an MTT that realizes
twist.

Cor 1. SupposeM = (Q,qo, X, A, R) to be an MTT realizing
twist. Letn € Tx. Then

[{ao, @)L | < (n+1)*(1 + K(K —1))H|Q||R|
Proof. Let S,, = {{(go,n)()} € NZ. LetS; and D; be the sets

whose existence is assured by the preceding lemma by t&king
asS. Then by the lemma,

{0, @)L | < |J Di-1

=0

< znja + K(K —1))H|Si||R|
< Z(l + K(K —1))H(i + 1)|Q||R|

< 2(1 + K(K —1))H(n+ 1)|Q[|R|

=(n+1)*(1+ K(K — 1))H|Q||R|
O

The corollary, however, leads to a contradiction, recalling that
the size oftwist’s output set is actually exponential. Hence there
exists no MTT realizingwist, proving the goal proposition of this
section.

Proof of Prop 4.In order for an MTTM to realize thetwist trans-
lation, it must be that(go,7)()| | = |Ox|. However,|Ox| = 2".
The corollary implies that an inequati@fi < (n+1)%(14+K (K —
1))H|Q||R|, which does not hold when we take sufficiently large
n. O

5. Future Work
This work is the very first step of our investigation on mr-MTTs

and many interesting questions concerning the expressiveness are

still left unanswered. For example, what is the relationship between
mr-MTTs andcompositiorof conventional MTTs? We have not yet

encountered any translation that can be realized by a mr-MTT but

not by a composition of MTTs (thewist translation, which we

used as a counterexample not realizable by an MTT, is realized by

the composition of two MTTs: one MTT that nondeterministically
generates a sequenceasf andbs, and the other MTT that gener-
ates its reversal deterministically). But it is still open whether inclu-
sion of mr-MTT by MTT" holds or not. Another example of open

questions is whether mr-MTTs create a proper hierarchy by dimen-
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sion, i.e., whether there is any translation that can be expressed by

an mr-MTT with dimensiond but not by mr-MTTs with a smaller
dimension.
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