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Background

 HORS (Higher Order Recursion Scheme)
is very powerful and expressive.

* n-EXPTIME hard problems!



Computational Complexity w.r.t.
Grammar Size and Data Size

* MSO on words/trees:

— Emptiness checking is non elementary (HYPEREXP)
for the size of the formula.

— The class of languages it represents is regular.
* O(n) time, O(1) space membership wrt the word length

“MSO on words is a verrrrrrrrry concise
representation for relatively simple languages.”



How about HORS?

* HORS:

— Emptiness, Model Checking, Containment by
Regular Languages, ... are n-EXPTIME hard.

— What is known about the languages it describes?

e ???? time, ???? space membership wrt the word length.



|Greibach 70}

Aho and Ullman [3] have shown that the indexed languages can be
characterized by AFAs whose data structure is a pushdown store of pushdown
stores, with an added duplicate order which replicates the topmost store.
They call these degree 2 pushdown stores and show that this idea can be
extended to degree n, for any #, and that all these families have decidable
emptiness problems and are contained in the context-sensitive languages.

3. A. V. Auo anp ]. ULLMAN, private communication.

Today’s talk verifies the statement
(even for wider class of languages).

[Gr70] S. A. Greibach, “Full AFLs and Nested Iterated Substitution”, Inf. Ctrl. 16




Our Approach

Intermediate Data Size

If they are at most of size M at any point, O(M) space & O(2M) time.



Outline of This Talk

* Target Language
— Higher-order Tree Transducers

e 1St-order Decomposition
— Sketch of the construction

* Garbage Free Form

— Derived consequences

— Sketch of the construction




HTT [Engelfriet&Vogler 88]

1)

Higher-order “single-input” “safe” tree transducer

Mult :: Tree > Tree
Mult(Pair(x;,Xx,)) =» Iter(x;)(Add(x,))(Z)

Iter :: Tree - (Tree - Tree) > Tree > Tree

Iter(s(x))(f)(y) =2 Iter(x)(f)(f(y))
Iter(Z)(f)(y) >y

Add :: Tree - Tree - Tree

Add(S(x))(y) = Add(x)(S(y))
Add(Z)(y) 2y



HTT

e Set of mutually recursive functions

— Defined in terms of induction on a single input tree
* Input trees are always consumed, not newly constructed
* Output trees are always created, but not destructed

— Rest of the parameters are ordered by the order
* Multiple parameters of the same order is ok but in uncurried form

Inductive Input Param Order-1 Param(s) Order-0 Param(s) Result

e = S &

Iter :: Tree > (Tree - Tree) 2> Tree =2 Tree

Iter(s(x))(f)(y) =2 Iter(x)(f)(f(y))
Iter(Z)(f)(y) >y




HTT

Nondeterminism ( // and L)

Subseq :: Tree > Tree

Subseqg(Cons(x,xs)) =» Cons(x, Subseq(xs))
/| Subseq(xs)

Subseq(Nil) = Nil

Subseqg(Other) = |

In this talk, evaluation strategy is unrestricted (= call-by-name).
But call-by-value can also be dealt with.



HTT

* Notation: n-HTT

— is the class of Tree>Tree functions
representable by HTTs of order = n.

—{Subseq}is O-HTT, {Mult, Iter, Add}E2-HTT

Subseq :: Tree > Tree

Mult :: Tree = Tree
Iter :: Tree =2 (Tree = Tree) =2 Tree =2 Tree

Add :: Tree = Tree = Tree



Order-n to Order-1

THEOREM [EV88] [EV86]
(Nn-HTT) & (1-HTT)"
n-th order tree transducer is representable

by a n-fold composition of 15t-order tree
transducers. (“=or & ?” is left open, as far as | know.)

[EV86] J. Engelfriet & H. Vogler, “Pushdown Machines for Macro Tree Transducers”, TCS 42
[EV88] —, “High Level Tree Transducers and Iterated Pushdown Tree Transducers”, Acta Inf. 26




Proof: n-HTT = 1-HTT o (n-1)-HTT

Idea:

Represent 15t-order term Tree=>Tree by a Tree.

F :: Tree -2 Tree—>Tree

F(Z)(y) 2 S(5(y))

F :: Tree = Tree
j> F(Z) = S(5(Y))

Represent 1%t-order application symbolically, too.

. D> F(x)(2)

$ . D> @(F(x), Z)



Proof: n-HTT = 1-HTT o (n-1)-HTT

Represent 1%t-order things symbolically.

F :: Tree - Tree

F(Z) D S(5(Y)) . =2 @(F(x), 2)
Then a 1-HTT performs the actual “application”.

Eval(@(f, b))(y)=> Eval(f, Eval(b)(y))
Eval(Y)(y) =y

Eval(S(x))(y) = S(Eval(x)(y))
Eval(Z)(y) > VA



Mult(Pair(xy,X,))=> @(Iter(xy) (Add(x5)), Z)
Iter(S(x))(F) = @(Iter(x)(f), acf, v))

Tter(z) () > Y
Add(S(x)) = @(Add(x),s(Y))
Add(z) > Y

MUTt(Pair(s(2).5(2))) @ @

e Iter(s(2)) (Add(s(2))) | | 2] @ e
@ & = e 2
[@j @@ [@] j Iter(z) (Add(s(2))) [@

C Add(s(z) Y
. Qe [@j @ @[]

n Add(5(2)) Example




Eval(@(f, b))(y)=> Eval(f, Eval(b)(y))
Eval(Y)(y) =y

Eval(S(x))(y) = S(Eval(x)(y))
Eval(Z)(y) = 7

. Eval (@,y= Z )

eval((e], y=1) - W &
e| [z] Eval(le], y=/2) 2 Z\\>

[@ [@j Eval (a,y=Eva1 (@,y: z )
f v QWY EE
DDl s vos

) )

Y Y Y

./ ~— —




Why That Easy

* Relies on the ordered-by-order condition.

— No variable renaming is required! [Blum&Ong 09]

Eval (,y=Eva1@,y= Z )
e v
Yos

[BO09] W. Blum and C.-H. L. Ong, “The Safe Lambda Calculus”, LMCS 5




Now, Decomposed.




Next, Make Intermediate Trees Small.

y VRRETTY




THEOREM [I. & Maneth 08] [I. 09]\* Improvement)

V1, . T,EL-HTT, 37, E0-LHTT, U, ..., T, E1-HTT,
for any (T,0...oTy)(s) D,
there exist T (s)Dsy, Ti(s) D5, |15 = 1541, 5,=

@JU

Y

|s| = number of nodes

[IMO8] K. Inaba & S. Maneth, “The complexity of tree transducer output languages”, FSTTCS

[Inaba09] K. Inaba, “Complexity and Expressiveness of Models of XML Transformations”, Dissertation




Consequences : Range Membership

/I\/Iembership problem for
the class Range(1-HTT ") of languages is
 in DLINSPACE

\ * in NP /
That is, given (t, o ... o T;) and t, we can determine

“3s. (t,0...0o1t)(s)Dt”
in O( f(|ty|+...+|T,])" |t| ) space and
in O( g(|t,|+...+|T,|)" poly(|t]) ) nondeterministic time.

~




Consequences : Range Membership

-

Membership problem for
the class Range(1-HTT ") of languages is
 in DLINSPACE

\ * in NP /
P(Rsz(()el_::s(in NP) or u . .

exhaustively try (in DLINSPACE)
all the intermediate trees: s ..

Then check Range(t’,,)2s, and t'(s;,)3
both turn out to be feasible in DLINSPACE n NP

~




Consequences : Range Membership

/I\/Iembership problem for
the class Range(1-HTT ") of languages is
 in DLINSPACE

k " In NP /
/ COROLLARY ) % : %

CSL (NLINSPACE)
Higher-order safe recursion scheme, also
known as Ol-hierarchy, HO-PDA language,
Maslov hierarchy, generalized indexed
\/anguage, etc., is Context-Sensitive. )

~

order-n

Indexed (order-2)

[ CFL (order-1) ]
[ Regular (order-0) ]




Consequences : Linear-Size Inverse

4 )
For all t o...ot, E1-HTT", tERange(t o...oT,)

there exists s such that
S f(s)=2t and |s| < h(]|to...oT,

NE

COROLLARY (by our constructive proof)
Right inverse of 1-HTT" is computable in DLINSPACENNP.




How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”

A/\®AE>:> A@A




How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”
by separating its “deleting” part

SALILMEN

I Ye ®?\L“M




How to Construct the “Garbage-Free” Form
Make each 1-HTT “productive”

by separating its “deleting” part,
and fuse the deleter to the left [en7s,771[Envoss][Enma02]

At/\ A= EE= Y




Repeat Split
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Key Part

Separate the “deleting” transformation

= Te i T
/\:>A=/\:> A o A




Key Part

slogan: Work on every node

(", must generate at least one node for each input node)

[T’dd M T, }
> A ® A




Work on Every Node = Visit All Nodes

Deleting HTTs

G(Z)(Y1) 2> Y1 E }
F(S(X1,%)) D F(x) | Ch

F(x;)
G(xy) (E(x,))

may not recurse down to a subtree.



Work on Every Node = Visit All Nodes

F(S(X15%5)) =2 G(Xx;) (F(X3))
Nondeterministically delete every subtree! @ ’
T 4ol

Del(S(xy,%,)) =
S12(Del(x,),Del(x,)) / S1_(Del(x,))
/S 2(Del(x,)) // S ()

F(S12(x1,X%;)) = G(Xq)(F(X;))
At least one choice F(Sl_(xl)) > 4 G(Xl)(J_)
of nodeterminism F(S_Z(Xz)) > |
->

“deletes correctly”.
F(S__0) L[
n




Work on Every Node = Work on Leaf

Erasing HTTs

F(S(x)) =2 G(x)(Z)
G(Z)(y) 2 ¥y

may be idle at leaves.




Work on Every Node = Work on Leaf

Erasing HTTs

F(S(x)) =2 G(x)(Z)
G(Z)(y) 2 ¥y

Inline Expansion F(S(2)) =& 7 [ t’n }




Work on Every Node
= Work on Monadic Nodes

Skipping HTTs

F(S(X))(V1:Y5:Y3) 2 F(X)(Vy,:¥Y3.Y1)
F(Z)(Y1,Y2,Y3) => Done(y,,Y,,Y3)

are good at juggling.



Work on Every Node
= Work on Monadic Nodes

Skipping HTTs

F(S(Xx))(Y32¥52Y3) D F(X)(V,,V3,Y;)
F(Z)(Y1,Y2,¥3) 2 Done(ys,y,,Y3)

Nondeterministic deletion again.
Remember how argugments would’ve been shuffled. v

F(Z123)(Y1,Y2,Y3) =2 Done(y;,Y,,Y3)
F(Z231)(Y1,Y2,Y3) =2 Done(y,,Ys,Y;1)
~(2312) (Y15 Y25Y3) =2 Done(yg,yl,yz)ﬂ

T, }




Simple Arithmetic

Input size = #leaf + #monadic + #others
— For each leaf on the input, generate =1 node.
— For each monadic node, generate =1 node.

— Thus, #leaf + #monadic = Output size.

For any tree, #others < #leaf = Output size.
Add: #leaf + #monadic + #others = Output size*2

So, Input size < Output Size * 2



Work on Nodes with Rank-2,3,...

* Input size < Output Size * 2

Fr(Bin(X;,X;))(y) =2 Fr(xy)(Fr(x;)(y))
Fr(A)(y) =2 A(y)
Fr(B)(y) =2 B(y)

This bound is sufficient for deriving the results,
but we can improve this to Input size = Output Size,
by deterministic deletion of leaves + inline expansion.



[T'dd M L }
/\:> Ao A




Summary

* Order-n HTT -2 (Order-1 HTT)"
* Garbage Free Form

— L( Safe-HORS ) is context-sensitive.

* Future Direction E @

— Extend it to Unsafe HTT

— Or, use it for proving
safe € unsafe S LARF’ Th




