Expressive Power of Safe HORS

Examined Through Decomposition of
Higher Order Programs to Garbage Free 15t Order Form

Kazuhiro Inaba

Joint work with Sebastian Maneth

at Shonan Meeting on
Automated Techniques for Higher-Order Program Verification

2011

Background

 HORS (Higher Order Recursion Scheme)
is very powerful and expressive.

* n-EXPTIME hard problems!

Computational Complexity w.r.t.
Grammar Size and Data Size

* MSO on words/trees:

— Emptiness checking is non elementary (HYPEREXP)
for the size of the formula.

— The class of languages it represents is regular.
* O(n) time, O(1) space membership wrt the word length

“MSO on words is a verrrrrrrrry concise
representation for relatively simple languages.”

How about HORS?

* HORS:

— Emptiness, Model Checking, Containment by
Regular Languages, ... are n-EXPTIME hard.

— What is known about the languages it describes?

e ???? time, ???? space membership wrt the word length.

|Greibach 70}

Aho and Ullman [3] have shown that the indexed languages can be
characterized by AFAs whose data structure is a pushdown store of pushdown
stores, with an added duplicate order which replicates the topmost store.
They call these degree 2 pushdown stores and show that this idea can be
extended to degree n, for any #, and that all these families have decidable
emptiness problems and are contained in the context-sensitive languages.

3. A. V. Auo anp]. ULLMAN, private communication.

Today’s talk verifies the statement
(even for wider class of languages).

[Gr70] S. A. Greibach, “Full AFLs and Nested Iterated Substitution”, Inf. Ctrl. 16

Our Approach

Intermediate Data Size

If they are at most of size M at any point, O(M) space & O(2M) time.

Outline of This Talk

* Target Language
— Higher-order Tree Transducers

e 1St-order Decomposition
— Sketch of the construction

* Garbage Free Form

— Derived consequences

— Sketch of the construction

HTT [Engelfriet&Vogler 88]

1)

Higher-order “single-input” “safe” tree transducer

Mult :: Tree > Tree
Mult(Pair(x;,Xx,)) =» Iter(x;)(Add(x,))(Z)

Iter :: Tree - (Tree - Tree) > Tree > Tree

Iter(s(x))(f)(y) =2 Iter(x)(f)(f(y))
Iter(Z)(f)(y) >y

Add :: Tree - Tree - Tree

Add(S(x))(y) = Add(x)(S(y))
Add(Z)(y) 2y

HTT

e Set of mutually recursive functions

— Defined in terms of induction on a single input tree
* Input trees are always consumed, not newly constructed
* Output trees are always created, but not destructed

— Rest of the parameters are ordered by the order
* Multiple parameters of the same order is ok but in uncurried form

Inductive Input Param Order-1 Param(s) Order-0 Param(s) Result

e = S &

Iter :: Tree > (Tree - Tree) 2> Tree =2 Tree

Iter(s(x))(f)(y) =2 Iter(x)(f)(f(y))
Iter(Z)(f)(y) >y

HTT

Nondeterminism (// and L)

Subseq :: Tree > Tree

Subseqg(Cons(x,xs)) =» Cons(x, Subseq(xs))
/| Subseq(xs)

Subseq(Nil) = Nil

Subseqg(Other) = |

In this talk, evaluation strategy is unrestricted (= call-by-name).
But call-by-value can also be dealt with.

HTT

* Notation: n-HTT

— is the class of Tree>Tree functions
representable by HTTs of order = n.

—{Subseq}is O-HTT, {Mult, Iter, Add}E2-HTT

Subseq :: Tree > Tree

Mult :: Tree = Tree
Iter :: Tree =2 (Tree = Tree) =2 Tree =2 Tree

Add :: Tree = Tree = Tree

Order-n to Order-1

THEOREM [EV88] [EV86]
(Nn-HTT) & (1-HTT)"
n-th order tree transducer is representable

by a n-fold composition of 15t-order tree
transducers. (“=or & ?” is left open, as far as | know.)

[EV86] J. Engelfriet & H. Vogler, “Pushdown Machines for Macro Tree Transducers”, TCS 42
[EV88] —, “High Level Tree Transducers and Iterated Pushdown Tree Transducers”, Acta Inf. 26

Proof: n-HTT = 1-HTT o (n-1)-HTT

Idea:

Represent 15t-order term Tree=>Tree by a Tree.

F :: Tree -2 Tree—>Tree

F(Z)(y) 2 S(5(y))

F :: Tree = Tree
j> F(Z) = S(5(Y))

Represent 1%t-order application symbolically, too.

. D> F(x)(2)

$. D> @(F(x), Z)

Proof: n-HTT = 1-HTT o (n-1)-HTT

Represent 1%t-order things symbolically.

F :: Tree - Tree

F(Z) D S(5(Y)) . =2 @(F(x), 2)
Then a 1-HTT performs the actual “application”.

Eval(@(f, b))(y)=> Eval(f, Eval(b)(y))
Eval(Y)(y) =y

Eval(S(x))(y) = S(Eval(x)(y))
Eval(Z)(y) > VA

Mult(Pair(xy,X,))=> @(Iter(xy) (Add(x5)), Z)
Iter(S(x))(F) = @(Iter(x)(f), acf, v))

Tter(z) () > Y
Add(S(x)) = @(Add(x),s(Y))
Add(z) > Y

MUTt(Pair(s(2).5(2))) @ @

e Iter(s(2)) (Add(s(2))) | | 2] @ e
@ & = e 2
[@j @@ [@] j Iter(z) (Add(s(2))) [@

C Add(s(z) Y
. Qe [@j @ @[]

n Add(5(2)) Example

Eval(@(f, b))(y)=> Eval(f, Eval(b)(y))
Eval(Y)(y) =y

Eval(S(x))(y) = S(Eval(x)(y))
Eval(Z)(y) = 7

. Eval (@,y= Z)

eval((e], y=1) - W &
e| [z] Eval(le], y=/2) 2 Z\\>

[@ [@j Eval (a,y=Eva1 (@,y: z)
f v QWY EE
DDl s vos

))

Y Y Y

./ ~— —

Why That Easy

* Relies on the ordered-by-order condition.

— No variable renaming is required! [Blum&Ong 09]

Eval (,y=Eva1@,y= Z)
e v
Yos

[BO09] W. Blum and C.-H. L. Ong, “The Safe Lambda Calculus”, LMCS 5

Now, Decomposed.

Next, Make Intermediate Trees Small.

y VRRETTY

THEOREM [I. & Maneth 08] [I. 09]* Improvement)

V1, . T,EL-HTT, 37, E0-LHTT, U, ..., T, E1-HTT,
for any (T,0...oTy)(s) D,
there exist T (s)Dsy, Ti(s) D5, |15 = 1541, 5,=

@JU

Y

|s| = number of nodes

[IMO8] K. Inaba & S. Maneth, “The complexity of tree transducer output languages”, FSTTCS

[Inaba09] K. Inaba, “Complexity and Expressiveness of Models of XML Transformations”, Dissertation

Consequences : Range Membership

/I\/Iembership problem for
the class Range(1-HTT ") of languages is
 in DLINSPACE

\ * in NP /
That is, given (t, o ... o T;) and t, we can determine

“3s. (t,0...0o1t)(s)Dt”
in O(f(|ty|+...+|T,])" |t|) space and
in O(g(|t,|+...+|T,|)" poly(|t])) nondeterministic time.

~

Consequences : Range Membership

-

Membership problem for
the class Range(1-HTT ") of languages is
 in DLINSPACE

\ * in NP /
P(Rsz(()el_::s(in NP) or u . .

exhaustively try (in DLINSPACE)
all the intermediate trees: s ..

Then check Range(t’,,)2s, and t'(s;,)3
both turn out to be feasible in DLINSPACE n NP

~

Consequences : Range Membership

/I\/Iembership problem for
the class Range(1-HTT ") of languages is
 in DLINSPACE

k " In NP /
/ COROLLARY) % : %

CSL (NLINSPACE)
Higher-order safe recursion scheme, also
known as Ol-hierarchy, HO-PDA language,
Maslov hierarchy, generalized indexed
\/anguage, etc., is Context-Sensitive.)

~

order-n

Indexed (order-2)

[CFL (order-1)]
[Regular (order-0)]

Consequences : Linear-Size Inverse

4)
For all t o...ot, E1-HTT", tERange(t o...oT,)

there exists s such that
S f(s)=2t and |s| < h(]|to...oT,

NE

COROLLARY (by our constructive proof)
Right inverse of 1-HTT" is computable in DLINSPACENNP.

How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”

A/\®AE>:> A@A

How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”
by separating its “deleting” part

SALILMEN

I Ye ®?\L“M

How to Construct the “Garbage-Free” Form
Make each 1-HTT “productive”

by separating its “deleting” part,
and fuse the deleter to the left [en7s,771[Envoss][Enma02]

At/\ A= EE= Y

Repeat Split

, R
EBIENEN TN ES
Fusef 4 N [N\
LT JLT Tagg Ty
Split 4 4 4 N 7 N [N\
) 4 Y4) 4
ENEN (NN
Fuse 4 N [N [N\
)) 4
T T T T
ol LT 2344 3 Ty
f — : I
A W v, v,
e N\ ’) Ya ’ ~
Split _ VTq2349 JL TH Ty JI U,
’ (’ 1(’ ’ W a?
[t_u_agdl L] T, Ty J U,

Key Part

Separate the “deleting” transformation

= Te i T
/\:>A=/\:> A o A

Key Part

slogan: Work on every node

(", must generate at least one node for each input node)

[T’dd M T, }
> A ® A

Work on Every Node = Visit All Nodes

Deleting HTTs

G(Z)(Y1) 2> Y1 E }
F(S(X1,%)) D F(x) | Ch

F(x;)
G(xy) (E(x,))

may not recurse down to a subtree.

Work on Every Node = Visit All Nodes

F(S(X15%5)) =2 G(Xx;) (F(X3))
Nondeterministically delete every subtree! @ ’
T 4ol

Del(S(xy,%,)) =
S12(Del(x,),Del(x,)) / S1_(Del(x,))
/S 2(Del(x,)) // S ()

F(S12(x1,X%;)) = G(Xq)(F(X;))
At least one choice F(Sl_(xl)) > 4 G(Xl)(J_)
of nodeterminism F(S_Z(Xz)) > |
->

“deletes correctly”.
F(S__0) L[
n

Work on Every Node = Work on Leaf

Erasing HTTs

F(S(x)) =2 G(x)(Z)
G(Z)(y) 2 ¥y

may be idle at leaves.

Work on Every Node = Work on Leaf

Erasing HTTs

F(S(x)) =2 G(x)(Z)
G(Z)(y) 2 ¥y

Inline Expansion F(S(2)) =& 7 [t’n }

Work on Every Node
= Work on Monadic Nodes

Skipping HTTs

F(S(X))(V1:Y5:Y3) 2 F(X)(Vy,:¥Y3.Y1)
F(Z)(Y1,Y2,Y3) => Done(y,,Y,,Y3)

are good at juggling.

Work on Every Node
= Work on Monadic Nodes

Skipping HTTs

F(S(Xx))(Y32¥52Y3) D F(X)(V,,V3,Y;)
F(Z)(Y1,Y2,¥3) 2 Done(ys,y,,Y3)

Nondeterministic deletion again.
Remember how argugments would’ve been shuffled. v

F(Z123)(Y1,Y2,Y3) =2 Done(y;,Y,,Y3)
F(Z231)(Y1,Y2,Y3) =2 Done(y,,Ys,Y;1)
~(2312) (Y15 Y25Y3) =2 Done(yg,yl,yz)ﬂ

T, }

Simple Arithmetic

Input size = #leaf + #monadic + #others
— For each leaf on the input, generate =1 node.
— For each monadic node, generate =1 node.

— Thus, #leaf + #monadic = Output size.

For any tree, #others < #leaf = Output size.
Add: #leaf + #monadic + #others = Output size*2

So, Input size < Output Size * 2

Work on Nodes with Rank-2,3,...

* Input size < Output Size * 2

Fr(Bin(X;,X;))(y) =2 Fr(xy)(Fr(x;)(y))
Fr(A)(y) =2 A(y)
Fr(B)(y) =2 B(y)

This bound is sufficient for deriving the results,
but we can improve this to Input size = Output Size,
by deterministic deletion of leaves + inline expansion.

[T'dd M L }
/\:> Ao A

Summary

* Order-n HTT -2 (Order-1 HTT)"
* Garbage Free Form

— L(Safe-HORS) is context-sensitive.

* Future Direction E @

— Extend it to Unsafe HTT

— Or, use it for proving
safe € unsafe S LARF’ Th

