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• HORS (Higher Order Recursion Scheme) 
is very powerful and expressive. 

 

• n-EXPTIME hard problems! 

Background 
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• MSO on words/trees: 
– Emptiness checking is non elementary (HYPEREXP) 

for the size of the formula. 

– The class of languages it represents is regular. 
• O(n) time, O(1) space membership wrt the word length 

 

“MSO on words is a verrrrrrrrry concise  
  representation for relatively simple languages.” 

Computational Complexity w.r.t. 
Grammar Size and Data Size 
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• HORS: 

– Emptiness, Model Checking, Containment by 
Regular Languages, ... are n-EXPTIME hard. 

– What is known about the languages it describes? 

• The class of languages it represents is ????. 

• ???? time, ???? space membership wrt the word length. 

 

How about HORS? 
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Today’s talk verifies the statement 
(even for wider class of languages). 

[Greibach 70] 

[Gr70] S. A. Greibach, “Full AFLs and Nested Iterated Substitution”, Inf. Ctrl. 16 
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Our Approach 

Intermediate Data Size 

 
 
 
 

HORS             

Output 

If they are at most of size M at any point, O(M) space & O(2M) time. 



7 

    Outline of This Talk 

• Target Language 
– Higher-order Tree Transducers 

 

• 1st-order Decomposition 
– Sketch of the construction 

 

• Garbage Free Form 
– Derived consequences 

– Sketch of the construction 

λ 
λ   λ 

t 
s1 s2 Sn-1 

s0 

τ1 τ2 τn 

τ'1 τ'2 τ'n τ'
del 
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HTT [Engelfriet&Vogler 88] 

Higher-order “single-input” “safe” tree transducer 

 Mult :: Tree  Tree 

Mult(Pair(x1,x2))  Iter(x1)(Add(x2))(Z) 
 

 Iter :: Tree  (Tree  Tree)  Tree  Tree 

Iter(S(x))(f)(y)  Iter(x)(f)(f(y)) 
Iter(Z)(f)(y)   y 
 
 Add :: Tree  Tree  Tree 

Add(S(x))(y)  Add(x)(S(y)) 
Add(Z)(y)   y 
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Iter :: Tree    (Tree  Tree)    Tree    Tree 

Iter(S(x))(f)(y)  Iter(x)(f)(f(y)) 
Iter(Z)(f)(y)   y 

HTT 

• Set of mutually recursive functions 
– Defined in terms of induction on a single input tree 

• Input trees are always consumed, not newly constructed 

• Output trees are always created, but not destructed 

– Rest of the parameters are ordered by the order 
• Multiple parameters of the same order is ok but in uncurried form 

Inductive Input Param Order-1 Param(s) Order-0 Param(s) Result 
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HTT 

Nondeterminism (∥and ⊥) 

 

 

 

 

 Subseq :: Tree  Tree 

Subseq(Cons(x,xs))  Cons(x, Subseq(xs)) 
                   ∥ Subseq(xs) 
Subseq(Nil)    Nil 
Subseq(Other)  ⊥ 

In this talk, evaluation strategy is unrestricted (= call-by-name). 
But call-by-value can also be dealt with.  
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HTT 

• Notation:  n-HTT 

– is the class of  TreeTree  functions 
representable by HTTs of order ≦ n. 

– {Subseq} is 0-HTT,  {Mult, Iter, Add}∈2-HTT 

 
 Subseq :: Tree  Tree 

 Mult :: Tree  Tree 
 Iter :: Tree  (Tree  Tree)  Tree  Tree 
 Add  :: Tree  Tree  Tree 
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Order-n to Order-1 

THEOREM [EV88] [EV86] 

 

    (n-HTT) ⊆ (1-HTT)n 
 
n-th order tree transducer is representable 
by a n-fold composition of 1st-order tree 
transducers.  (“= or ⊊ ?” is left open, as far as I know.) 

[EV86] J. Engelfriet & H. Vogler, “Pushdown Machines for Macro Tree Transducers”, TCS 42 

[EV88] ─, “High Level Tree Transducers and Iterated Pushdown Tree Transducers”, Acta Inf. 26 
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Proof: n-HTT = 1-HTT ∘ (n-1)-HTT  

Idea: 
  Represent 1st-order  term TreeTree by a Tree. 
 

 

 

  Represent 1st-order application symbolically, too. 

 F :: Tree  TreeTree 

F(Z)(y)  S(S(y)) 

 F :: Tree  Tree 

F(Z)  S(S(Y)) 

…  @(F(x), Z) …  F(x)(Z) 
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Proof: n-HTT = 1-HTT ∘ (n-1)-HTT  

Represent 1st-order things symbolically. 

 

 

Then a 1-HTT performs the actual “application”. 

Eval(@(f, b))(y)  Eval(f, Eval(b)(y)) 
Eval(Y)(y)   y 
Eval(S(x))(y)  S(Eval(x)(y)) 
Eval(Z)(y)   Z 

 F :: Tree  Tree 

F(Z)  S(S(Y)) 
…  @(F(x), Z) 
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Mult(Pair(S(Z),S(Z))) @ 

Z Iter(S(Z))(Add(S(Z))) @ 

Z 

Iter(Z)(Add(S(Z))) 

@ 

@ 

Add(S(Z)) Y 

@ 

Z @ 

@ 

Add(S(Z)) Y 

Y 

@ 

Z @ 

@ 

Y 

Y 

@ 

Y 

S Y 

Example 

Mult(Pair(x1,x2)) @(Iter(x1)(Add(x2)), Z) 
Iter(S(x))(f)  @(Iter(x)(f), @(f, Y)) 
Iter(Z)(f)   Y 
Add(S(x))   @(Add(x),S(Y)) 
Add(Z)    Y 
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Eval(   , y=⊥) @ 

Z @ 

@ 

Y 

Y 

@ 

Y 

S Y 

Eval(   , y=   ) Z @ 

@ 

Y 

Y 

@ 

Y 

S Y 

Eval(   ,y=Eval(   ,y=   ) Z @ 

Y 

Y 

@ 

Y 

S Y 

Z 

S 

Eval(@(f, b))(y)  Eval(f, Eval(b)(y)) 
Eval(Y)(y)   y 
Eval(S(x))(y)  S(Eval(x)(y)) 
Eval(Z)(y)   Z 

Eval(   ,y=   ) Z @ 

Y @ 

Y 

S Y 
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Why That Easy 

• Relies on the ordered-by-order condition. 

– No variable renaming is required! [Blum&Ong 09] 

 

 

[BO09] W. Blum and C.-H. L. Ong, “The Safe Lambda Calculus”, LMCS 5 

Eval(   ,y=Eval(   ,y=   ) Z @ 

Y 

Y 

@ 

Y 

S Y 
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Now, Decomposed. 

n-HTT 
λ λ λ 

1-HTT n 

τ1 τ2 τn 
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Next, Make Intermediate Trees Small. 

1-HTT n 

t 
s 

s1 s2 Sn-1 

s0 

τ1 τ2 τn τ'1 τ'2 τ'n τ'
del 

t 
s 
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THEOREM [I. & Maneth 08] [I. 09](+ improvement) 

 

  ∀τ1, ..., τn∈1-HTT,  ∃τ’del∈0-LHTT,  τ’1, ..., τ’n ∈1-HTT, 
     for any         (τn ∘ ... ∘ τ1)(s) ∋ t, 
     there exist   τ’del(s)∋s0, τ’i(si)∋si+1, |si|≦|si+1|, sn=t. 

[IM08] K. Inaba & S. Maneth, “The complexity of tree transducer output languages”, FSTTCS 

[Inaba09] K. Inaba, “Complexity and Expressiveness of Models of XML Transformations”, Dissertation 

t 
s 

s1 s2 Sn-1 

s0 

τ1 τ2 τn τ'1 τ'2 τ'n τ'
del 

t 
s 

|s| = number of nodes 
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Consequences : Range Membership 

That is, given (τn ∘ ... ∘ τ1) and t, we can determine 

    “∃s. (τn ∘ ... ∘ τ1)(s)∋t” 
in O( f(|τ1|+...+|τn|)・|t| ) space and 
in O( g(|τ1|+...+|τn|)・ poly(|t|)  ) nondeterministic time. 

Membership problem for 
the class Range(1-HTT n) of languages is 
     ・ in DLINSPACE 
     ・ in NP 
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Consequences : Range Membership 

PROOF 
  Guess (in NP) or 
  exhaustively try (in DLINSPACE) 
  all the intermediate trees: s0 ... sn-1. 
 
  Then check Range(τ’del)∋s0  and  τ’i(si)∋si+1, 
  both turn out to be feasible in DLINSPACE ∩ NP. 

Membership problem for 
the class Range(1-HTT n) of languages is 
     ・ in DLINSPACE 
     ・ in NP 

t s s1 s2 Sn-1 

s0 

τ'1 τ'2 τ'n τ'
del 
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Consequences : Range Membership 

COROLLARY 

Higher-order safe recursion scheme, also 
known as OI-hierarchy, HO-PDA language, 
Maslov hierarchy, generalized indexed 
language, etc., is Context-Sensitive. 

Membership problem for 
the class Range(1-HTT n) of languages is 
     ・ in DLINSPACE 
     ・ in NP 

CFL (order-1) 

RE 

Indexed (order-2) 

order-n 

CSL (NLINSPACE) 

Regular (order-0) 
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Consequences : Linear-Size Inverse 

COROLLARY   (by our constructive proof) 

 Right inverse of 1-HTTn is computable in DLINSPACE∩NP. 

For all τn∘...∘τ1∈1-HTTn , t∈Range(τn∘...∘τ1) 
there exists s such that 
     f(s)∋t    and   |s| <  h(|τn∘...∘τ1|)・|t| 
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How to Construct the “Garbage-Free” Form 

Make each 1-HTT “productive” 

τ’n τn-1 

t 

τn τn-1 

t 
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How to Construct the “Garbage-Free” Form 

Make each 1-HTT “productive” 
by separating its “deleting” part 

τ’n τn-1 

t 

τ’del 

τn τn-1 

t 

τn τ’n τ’del = 
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How to Construct the “Garbage-Free” Form 

Make each 1-HTT “productive” 
by separating its “deleting” part, 
and fuse the deleter to the left [En75,77][EnVo85][EnMa02] 

τ’n τ’n-1+del 

t 

τn τn-1 

t 
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Repeat τ4 τ3 τ2 τ1 

τ3 τ2 τ1 τ’4 τ’4d 

τ34d τ2 τ1 τ’4 

τ’3 τ2 τ1 τ’4 τ’34d 

τ’3 τ234d τ1 τ’4 

τ’3 τ’2 τ1 τ’4 τ’234d 

τ’3 τ’2 τ’4 τ1234d 

τ’3 τ’2 τ’4 τ’1 τ’1234d 

Split 

Fuse 

Split 

Fuse 

Split 

Fuse 

Split 
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Separate the “deleting” transformation 

Key Part 

τ’n = τ’del τn 
; 

= 
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Slogan: Work on every node 
(τ’n must generate at least one node for each input node) 

Key Part 

τ’n τ’del ; 
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Deleting HTTs 

Work on Every Node ⇒ Visit All Nodes 

G(Z)(y1)  Z ∥ y1 
F(S(x1,x2))  F(x1) 
    ∥ F(x2) 
    ∥ G(x1)(F(x2)) 

τn 

may not recurse down to a subtree. 
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Nondeterministically delete every subtree! 

Work on Every Node ⇒ Visit All Nodes 

F(S(x1,x2))  G(x1)(F(x2)) τn 

F(S12(x1,x2))  G(x1)(F(x2)) 
F(S1_(x1))  G(x1)(⊥) 
F(S_2(x2))  ⊥ 
F(S__())   ⊥ τ’n 

Del(S(x1,x2))  
 S12(Del(x1),Del(x2)) ∥ S1_(Del(x1)) 
 ∥ S_2(Del(x2)) ∥ S__() 

τ’del 

At least one choice 
of nodeterminism 
“deletes correctly”. 
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Work on Every Node ⇒ Work on Leaf 

Erasing HTTs 

F(S(x))  G(x)(Z)  
G(Z)(y)  y 

may be idle at leaves. 

τn 
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Work on Every Node ⇒ Work on Leaf 

F(S(Z))  Z τ’n Inline Expansion 

Erasing HTTs 

F(S(x))  G(x)(Z)  
G(Z)(y)  y 

τn 
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Work on Every Node 
 ⇒ Work on Monadic Nodes 

F(S(x))(y1,y2,y3)  F(x)(y2,y3,y1) 
F(Z)(y1,y2,y3)     Done(y1,y2,y3) 

Skipping HTTs 

are good at juggling. 

τn 
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Work on Every Node 
 ⇒ Work on Monadic Nodes 

Nondeterministic deletion again. 

Remember how argugments would’ve been shuffled. 

F(Z123)(y1,y2,y3)  Done(y1,y2,y3) 
F(Z231)(y1,y2,y3)  Done(y2,y3,y1) 
F(Z312)(y1,y2,y3)  Done(y3,y1,y2) 

F(S(x))(y1,y2,y3)  F(x)(y2,y3,y1) 
F(Z)(y1,y2,y3)     Done(y1,y2,y3) 

Skipping HTTs τn 

τ’n 
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• Input size  =  #leaf  +  #monadic  +  #others  
– For each leaf on the input, generate ≧1 node. 

– For each monadic node, generate ≧1 node. 

– Thus, #leaf + #monadic ≦ Output size. 

 

• For any tree, #others < #leaf ≦ Output size. 

• Add: #leaf + #monadic + #others ≦ Output size*2 

 

• So,  Input size  <  Output Size * 2 

 

Simple Arithmetic 
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• Input size  <  Output Size * 2 

 

 

 

 

This bound is sufficient for deriving the results, 
but we can improve this to Input size ≦ Output Size, 
by deterministic deletion of leaves + inline expansion. 

Work on Nodes with Rank-2,3,... 

Fr(Bin(x1,x2))(y)  Fr(x1)(Fr(x2)(y)) 
Fr(A)(y)  A(y) 
Fr(B)(y)  B(y) 
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Done! 

τ’n τ’del ; 
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    Summary 

• Order-n HTT  (Order-1 HTT)n 

• Garbage Free Form 

– L( Safe-HORS ) is context-sensitive. 

 

• Future Direction 

– Extend it to Unsafe HTT 

– Or, use it for proving 
  safe ⊊ unsafe 

λ 
λ   λ 

t 
s1 s2 Sn-1 

s0 

τ1 τ2 τn 

τ'1 τ'2 τ'n τ'
del 


