
1

Expressive Power of Safe HORS

 Examined Through Decomposition of
 Higher Order Programs to Garbage Free 1st Order Form

Kazuhiro Inaba
Joint work with Sebastian Maneth

at Shonan Meeting on

 Automated Techniques for Higher-Order Program Verification
2011

2

• HORS (Higher Order Recursion Scheme)
is very powerful and expressive.

• n-EXPTIME hard problems!

Background

3

• MSO on words/trees:
– Emptiness checking is non elementary (HYPEREXP)

for the size of the formula.

– The class of languages it represents is regular.
• O(n) time, O(1) space membership wrt the word length

“MSO on words is a verrrrrrrrry concise
 representation for relatively simple languages.”

Computational Complexity w.r.t.
Grammar Size and Data Size

4

• HORS:

– Emptiness, Model Checking, Containment by
Regular Languages, ... are n-EXPTIME hard.

– What is known about the languages it describes?

• The class of languages it represents is ????.

• ???? time, ???? space membership wrt the word length.

How about HORS?

5

Today’s talk verifies the statement
(even for wider class of languages).

[Greibach 70]

[Gr70] S. A. Greibach, “Full AFLs and Nested Iterated Substitution”, Inf. Ctrl. 16

6

Our Approach

Intermediate Data Size

HORS

Output

If they are at most of size M at any point, O(M) space & O(2M) time.

7

 Outline of This Talk

• Target Language
– Higher-order Tree Transducers

• 1st-order Decomposition
– Sketch of the construction

• Garbage Free Form
– Derived consequences

– Sketch of the construction

λ
λ λ

t
s1 s2 Sn-1

s0

τ1 τ2 τn

τ'1 τ'2 τ'n τ'
del

8

HTT [Engelfriet&Vogler 88]

Higher-order “single-input” “safe” tree transducer

 Mult :: Tree  Tree

Mult(Pair(x1,x2))  Iter(x1)(Add(x2))(Z)

 Iter :: Tree  (Tree  Tree)  Tree  Tree

Iter(S(x))(f)(y)  Iter(x)(f)(f(y))
Iter(Z)(f)(y)  y

 Add :: Tree  Tree  Tree

Add(S(x))(y)  Add(x)(S(y))
Add(Z)(y)  y

9

Iter :: Tree  (Tree  Tree)  Tree  Tree

Iter(S(x))(f)(y)  Iter(x)(f)(f(y))
Iter(Z)(f)(y)  y

HTT

• Set of mutually recursive functions
– Defined in terms of induction on a single input tree

• Input trees are always consumed, not newly constructed

• Output trees are always created, but not destructed

– Rest of the parameters are ordered by the order
• Multiple parameters of the same order is ok but in uncurried form

Inductive Input Param Order-1 Param(s) Order-0 Param(s) Result

10

HTT

Nondeterminism (∥and ⊥)

 Subseq :: Tree  Tree

Subseq(Cons(x,xs))  Cons(x, Subseq(xs))
 ∥ Subseq(xs)
Subseq(Nil)  Nil
Subseq(Other)  ⊥

In this talk, evaluation strategy is unrestricted (= call-by-name).
But call-by-value can also be dealt with.

11

HTT

• Notation: n-HTT

– is the class of TreeTree functions
representable by HTTs of order ≦ n.

– {Subseq} is 0-HTT, {Mult, Iter, Add}∈2-HTT

 Subseq :: Tree  Tree

 Mult :: Tree  Tree
 Iter :: Tree  (Tree  Tree)  Tree  Tree
 Add :: Tree  Tree  Tree

12

Order-n to Order-1

THEOREM [EV88] [EV86]

 (n-HTT) ⊆ (1-HTT)n

n-th order tree transducer is representable
by a n-fold composition of 1st-order tree
transducers. (“= or ⊊ ?” is left open, as far as I know.)

[EV86] J. Engelfriet & H. Vogler, “Pushdown Machines for Macro Tree Transducers”, TCS 42

[EV88] ─, “High Level Tree Transducers and Iterated Pushdown Tree Transducers”, Acta Inf. 26

13

Proof: n-HTT = 1-HTT ∘ (n-1)-HTT

Idea:
 Represent 1st-order term TreeTree by a Tree.

 Represent 1st-order application symbolically, too.

 F :: Tree  TreeTree

F(Z)(y)  S(S(y))

 F :: Tree  Tree

F(Z)  S(S(Y))

…  @(F(x), Z) …  F(x)(Z)

14

Proof: n-HTT = 1-HTT ∘ (n-1)-HTT

Represent 1st-order things symbolically.

Then a 1-HTT performs the actual “application”.

Eval(@(f, b))(y)  Eval(f, Eval(b)(y))
Eval(Y)(y)  y
Eval(S(x))(y)  S(Eval(x)(y))
Eval(Z)(y)  Z

 F :: Tree  Tree

F(Z)  S(S(Y))
…  @(F(x), Z)

15

Mult(Pair(S(Z),S(Z))) @

Z Iter(S(Z))(Add(S(Z))) @

Z

Iter(Z)(Add(S(Z)))

@

@

Add(S(Z)) Y

@

Z @

@

Add(S(Z)) Y

Y

@

Z @

@

Y

Y

@

Y

S Y

Example

Mult(Pair(x1,x2)) @(Iter(x1)(Add(x2)), Z)
Iter(S(x))(f)  @(Iter(x)(f), @(f, Y))
Iter(Z)(f)  Y
Add(S(x))  @(Add(x),S(Y))
Add(Z)  Y

16

Eval(, y=⊥) @

Z @

@

Y

Y

@

Y

S Y

Eval(, y=) Z @

@

Y

Y

@

Y

S Y

Eval(,y=Eval(,y=) Z @

Y

Y

@

Y

S Y

Z

S

Eval(@(f, b))(y)  Eval(f, Eval(b)(y))
Eval(Y)(y)  y
Eval(S(x))(y)  S(Eval(x)(y))
Eval(Z)(y)  Z

Eval(,y=) Z @

Y @

Y

S Y

17

Why That Easy

• Relies on the ordered-by-order condition.

– No variable renaming is required! [Blum&Ong 09]

[BO09] W. Blum and C.-H. L. Ong, “The Safe Lambda Calculus”, LMCS 5

Eval(,y=Eval(,y=) Z @

Y

Y

@

Y

S Y

18

Now, Decomposed.

n-HTT
λ λ λ

1-HTT n

τ1 τ2 τn

19

Next, Make Intermediate Trees Small.

1-HTT n

t
s

s1 s2 Sn-1

s0

τ1 τ2 τn τ'1 τ'2 τ'n τ'
del

t
s

20

THEOREM [I. & Maneth 08] [I. 09](+ improvement)

 ∀τ1, ..., τn∈1-HTT, ∃τ’del∈0-LHTT, τ’1, ..., τ’n ∈1-HTT,
 for any (τn ∘ ... ∘ τ1)(s) ∋ t,
 there exist τ’del(s)∋s0, τ’i(si)∋si+1, |si|≦|si+1|, sn=t.

[IM08] K. Inaba & S. Maneth, “The complexity of tree transducer output languages”, FSTTCS

[Inaba09] K. Inaba, “Complexity and Expressiveness of Models of XML Transformations”, Dissertation

t
s

s1 s2 Sn-1

s0

τ1 τ2 τn τ'1 τ'2 τ'n τ'
del

t
s

|s| = number of nodes

21

Consequences : Range Membership

That is, given (τn ∘ ... ∘ τ1) and t, we can determine

 “∃s. (τn ∘ ... ∘ τ1)(s)∋t”
in O(f(|τ1|+...+|τn|)・|t|) space and
in O(g(|τ1|+...+|τn|)・ poly(|t|)) nondeterministic time.

Membership problem for
the class Range(1-HTT n) of languages is
 ・ in DLINSPACE
 ・ in NP

22

Consequences : Range Membership

PROOF
 Guess (in NP) or
 exhaustively try (in DLINSPACE)
 all the intermediate trees: s0 ... sn-1.

 Then check Range(τ’del)∋s0 and τ’i(si)∋si+1,
 both turn out to be feasible in DLINSPACE ∩ NP.

Membership problem for
the class Range(1-HTT n) of languages is
 ・ in DLINSPACE
 ・ in NP

t s s1 s2 Sn-1

s0

τ'1 τ'2 τ'n τ'
del

23

Consequences : Range Membership

COROLLARY

Higher-order safe recursion scheme, also
known as OI-hierarchy, HO-PDA language,
Maslov hierarchy, generalized indexed
language, etc., is Context-Sensitive.

Membership problem for
the class Range(1-HTT n) of languages is
 ・ in DLINSPACE
 ・ in NP

CFL (order-1)

RE

Indexed (order-2)

order-n

CSL (NLINSPACE)

Regular (order-0)

24

Consequences : Linear-Size Inverse

COROLLARY (by our constructive proof)

 Right inverse of 1-HTTn is computable in DLINSPACE∩NP.

For all τn∘...∘τ1∈1-HTTn , t∈Range(τn∘...∘τ1)
there exists s such that
 f(s)∋t and |s| < h(|τn∘...∘τ1|)・|t|

25

How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”

τ’n τn-1

t

τn τn-1

t

26

How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”
by separating its “deleting” part

τ’n τn-1

t

τ’del

τn τn-1

t

τn τ’n τ’del =

27

How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”
by separating its “deleting” part,
and fuse the deleter to the left [En75,77][EnVo85][EnMa02]

τ’n τ’n-1+del

t

τn τn-1

t

28

Repeat τ4 τ3 τ2 τ1

τ3 τ2 τ1 τ’4 τ’4d

τ34d τ2 τ1 τ’4

τ’3 τ2 τ1 τ’4 τ’34d

τ’3 τ234d τ1 τ’4

τ’3 τ’2 τ1 τ’4 τ’234d

τ’3 τ’2 τ’4 τ1234d

τ’3 τ’2 τ’4 τ’1 τ’1234d

Split

Fuse

Split

Fuse

Split

Fuse

Split

29

Separate the “deleting” transformation

Key Part

τ’n = τ’del τn
;

=

30

Slogan: Work on every node
(τ’n must generate at least one node for each input node)

Key Part

τ’n τ’del ;

31

Deleting HTTs

Work on Every Node ⇒ Visit All Nodes

G(Z)(y1)  Z ∥ y1
F(S(x1,x2))  F(x1)
 ∥ F(x2)
 ∥ G(x1)(F(x2))

τn

may not recurse down to a subtree.

32

Nondeterministically delete every subtree!

Work on Every Node ⇒ Visit All Nodes

F(S(x1,x2))  G(x1)(F(x2)) τn

F(S12(x1,x2))  G(x1)(F(x2))
F(S1_(x1))  G(x1)(⊥)
F(S_2(x2))  ⊥
F(S__())  ⊥ τ’n

Del(S(x1,x2)) 
 S12(Del(x1),Del(x2)) ∥ S1_(Del(x1))
 ∥ S_2(Del(x2)) ∥ S__()

τ’del

At least one choice
of nodeterminism
“deletes correctly”.

33

Work on Every Node ⇒ Work on Leaf

Erasing HTTs

F(S(x))  G(x)(Z)
G(Z)(y)  y

may be idle at leaves.

τn

34

Work on Every Node ⇒ Work on Leaf

F(S(Z))  Z τ’n Inline Expansion

Erasing HTTs

F(S(x))  G(x)(Z)
G(Z)(y)  y

τn

35

Work on Every Node
 ⇒ Work on Monadic Nodes

F(S(x))(y1,y2,y3)  F(x)(y2,y3,y1)
F(Z)(y1,y2,y3)  Done(y1,y2,y3)

Skipping HTTs

are good at juggling.

τn

36

Work on Every Node
 ⇒ Work on Monadic Nodes

Nondeterministic deletion again.

Remember how argugments would’ve been shuffled.

F(Z123)(y1,y2,y3)  Done(y1,y2,y3)
F(Z231)(y1,y2,y3)  Done(y2,y3,y1)
F(Z312)(y1,y2,y3)  Done(y3,y1,y2)

F(S(x))(y1,y2,y3)  F(x)(y2,y3,y1)
F(Z)(y1,y2,y3)  Done(y1,y2,y3)

Skipping HTTs τn

τ’n

37

• Input size = #leaf + #monadic + #others
– For each leaf on the input, generate ≧1 node.

– For each monadic node, generate ≧1 node.

– Thus, #leaf + #monadic ≦ Output size.

• For any tree, #others < #leaf ≦ Output size.

• Add: #leaf + #monadic + #others ≦ Output size*2

• So, Input size < Output Size * 2

Simple Arithmetic

38

• Input size < Output Size * 2

This bound is sufficient for deriving the results,
but we can improve this to Input size ≦ Output Size,
by deterministic deletion of leaves + inline expansion.

Work on Nodes with Rank-2,3,...

Fr(Bin(x1,x2))(y)  Fr(x1)(Fr(x2)(y))
Fr(A)(y)  A(y)
Fr(B)(y)  B(y)

39

Done!

τ’n τ’del ;

40

 Summary

• Order-n HTT  (Order-1 HTT)n

• Garbage Free Form

– L(Safe-HORS) is context-sensitive.

• Future Direction

– Extend it to Unsafe HTT

– Or, use it for proving
 safe ⊊ unsafe

λ
λ λ

t
s1 s2 Sn-1

s0

τ1 τ2 τn

τ'1 τ'2 τ'n τ'
del

