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The Talk is about a Property on…

String/Tree Transformations

e.g., 

and

Regular Languages

e.g.,

dup(s) = s ++ s

a*|b*

reverse([]) = []
reverse(x:xs)= reverse(xs)++[x]

a((a|b)*|c)*b



The Property IRP

Inverse Regularity Preserving

A function  f  is IRP iff

For any regular language L,

the inv. img.  f-1(L)  =  {s | f(s) ∈ L}  is regular

Example: “dup” and “reverse”

Example:

dup(s) =

s ++ s a*b*???a*|b*



Agenda

Why you should be interested in IRP?
IRP-based typechecking

Always-IRP computation models

Q: “Do the models cover all IRP?”

A: “No, IRP∩LSI is not RE.”
Proof Tech. 1: Clever diagonalization

Proof Tech. 2: Slenderness of languages



Why IRP?

Typechecking f :: LIN → LOUT ？
Verify that a transformation always 

generates valid outputs from valid inputs.

f LIN LOUT

XSLT Template for 

formating bookmarks
XBEL  Schema XHTML Schema

PHP Script Arbitrary String
String not containing 

“<script>”



Why IRP?

Typechecking f :: LIN → LOUT ？
If f is IRP, we can check this by …

f is type-correct

⇔ f(LIN) ⊆ LOUT 

⇔ LIN ⊆ f-1(LOUT)

(for experts:  f is assumed to be deterministic)



FAQ: Why IRP?

ForwardRP also enables typechecking

FRP-based checking: f(LIN) ⊆ LOUT 

IRP-based checking : LIN ⊆ f-1(LOUT)

Reasons

IRP provides more useful counter examples.

Many functions in practice tend to be IRP, 

but not so for FRP.   E.g., “dup”.



IRP-Based Typechecking

Not all transformations are IRP

The trend is to define a restricted

language whose programs are always IRP

and present sound & complete 

typechecking for them

or use them as clearly defined targets for 

approximate checking



Famous Computation Models of
IRP Tree Transformations

MTT* = PTT* = ATT* = …

MTT [Engelfriet&Vogler 1985]

PTT
[Milo&Suciu&

Vianu 2000]

ATT [Fülop 1981]

T
[Thatcher70, 

Rounds70]

B

MSOTT
[Courcelle 1994]

GSM

(note: X* := {f1・f2・…・fn  | n∈Nat, fi∈X })



One Example: MTT

MTT = The class of functions on trees defined 

by (mutual) structural recursion + 

accumulating parameters

MTT* = Finite composition of MTTs

MTT ::= FUN … FUN
FUN ::= f(A(x1,…,xn), y1,…,yk) → RHS

RHS ::= C( RHS, … , RHS )
| f(xi, RHS, …, RHS) | yi

start( A(x1) ) → double( x1, double(x1, E) )
double( A(x1), y1) → double( x1, double(x1, y1) )
double( B, y1 ) → C( y1, y1 )

Syntax

Example



Question

Do they cover all IRP transformations?

MTT* = PTT* = ATT* = .. = IRP ?

⊆ is known

⊇ ?

(Attribution: I’ve first heard this question from 

Sebastian Maneth, who heard it from Keisuke Nakano)



Answer: “No”

K. Inaba, PPL 2010 Short Presentation

tower( “a..a” ) = “aa…aa”
where  2^^0 = 1,   2^^(n+1) = 22^^n

is IRP but not in MTT*

But its growth is toooooooooo fast!

Aren’t there any “milder” counterexample?

2^^nn



LSI: Linear Size Increase =
∃c. ∀t. len(f(t))＜c・len(t) 

MTT* = PTT* = ATT* = …

MTT
PTT

ATT

T

BMSOTT
= MSOTT*

= (MTT*=PTT*=…)∩LSI

= (MTT∩LSI)* = …

GSM



New Question

MSOTT

= (MTT*=PTT*=ATT*=…)∩LSI

= IRP ∩ LSI ?

⊆ is known

⊇ ?



There exists a IRP∩LSI transformation

that cannot be written in MSOTT

Main Theorem of This Talk

The class of IRP∩LSI transformations

is not recursively enumerable.
(There’s no Turing machine that enumerates all of them)

Answer: “No”



THE PROOF



Overview

Basic idea is

the Diagonalization (対角線論法)

“Give me a enumeration {g1, g2, g3, …} of the 

class of functions.  Then I will show you a 

function  f  not in the enumeration.”

The class of IRP∩LSI transformations

is not recursively enumerable.
(There’s no Turing machine that enumerates all of them)



Diagonalization

(Assuming a fixed alphabet,) we can 

enumerate all string/trees: {t1, t2, t3, …}

Given enumeration {g1, g2, g3, …} of the class

We construct f as:

f( ti ) := arbitrary tree

except gi(ti)

Caution!

f may not be IRP nor LSI

t1 t2 t3 t4 …

g1 ×

g2 ×

g3 ×

g4 ×

… …



Diagonalization

What we really want is this:

“Give me a enumeration {g1, g2, g3, …} 

of the IRP ∩ LSI functions.  Then I will 

show you a function  f  not in the 

enumeration but in IRP∩LSI.”

which derives contradiction.

The class of IRP∩LSI transformations

is not recursively enumerable.
(There’s no Turing machine that enumerates all of them)



Diagonalization

We can enumerate all regular languages:

{R1, R2, R3, …}

Given enumeration {g1, g2, g3, …} of the class

We construct f so that:

f( t ) ≠ gi(t) for some

t ⇜ {R1,R2,…,Ri}

f-1( Ri ) = almost Ri

R1 R2 R3 R4 …

g1 ×

g2 ×

g3 ×

g4 ×

… …



Preparation

Known facts on Regular Languages

All finite sets are regular

They are closed under boolean ops.
If  R1, R2 ∈ REG then

R1 ∩ R2 ∈ REG

R1 ∪ R2 ∈ REG

～R1 ∈ REG

“Slenderness” is decidable
[Paun&Salomaa 1993] “Language-Theoretic Problems Arising from 

Richelieu Cryptosystems”, TCS(116), pp.339-357



Preparation: Slenderness

A set L of string is slender iff

∃c. ∀n.  #{s | s∈L, len(s)=n } ≦ c

{1, 11, 111, 1111, …}    is slender

{0, 1, 10, 11, 100, 101, …}    is not slender

L1,L2 is slender   L1∪L2 is slender

L1,L2 is co-slender   L1∩L2 is co-slender

Co-slender ⇔ complement is slender 

Not co-slender ⇔ a plenty of supply of

non-members



Main Lemma
Let {g1, g2, … } be an enumeration of total functions.

Let {R1, R2, … } be an enumeration of all regular langs.

Then we can construct {(f0,D0), (f1,D1), …} such that

Φ=f0 ⊆ f1 ⊆ f2 ⊆ …

Φ=D0 ⊆ D1 ⊆ D2 ⊆ …

Either   Ri ⊆ Di or  ～Ri ⊆ Di

∃x∈Di. fi(x) ≠ gi(x) 

Di is not co-slender 

fi is bijective on Di

For all but finitely many x∈Di,  fi(x) = x 

∀x∈Di.  len( fi(x) ) = len(x)

# increasing list of partial functions

# linear size increase

# eventually covers all
regular languages

# almost identity
(hence IRP)

# technical detail

# different from every gi



Proof of the Main Lemma

By Induction

f0 = D0 = Φ

Suppose we already have fn and Dn , and

construct fn+1 and Dn+1.

Set of

All Strings Dn+1 = dom(fn+1)

where fn+1 ≠ gn+1

Rn+1Dn = dom(fn)

Requirements

- Dn+1 must cover 
either Rn+1 or ～Rn+1

- Dn+1 must not be

co-slender
-

- Dn+1 must have 

elems to distinguish 

gn+1 and fn+1



Proof of the Main Lemma

Dn is not co-slender. 

Take  x, y ∈～Dn s.t. len(x)=len(y) but x≠y

Then Take

Dn+1 := Dn ∪ {x,y} ∪ Rn

if it is not co-slender

Dn+1 := Dn ∪ {x,y} ∪ ～Rn

otherwise

Requirements

- Dn+1 must cover 
either Rn+1 or ～Rn+1

- Dn+1 must not be

co-slender
-

- Dn+1 must have 

elems to distinguish 

gn+1 and fn+1

↑this becomes
not-co-slender!



Proof of the Main Lemma

We then construct fn+1

fn+1( s ) = fn(s)    if  s ∈ Dn

if gn+1(x) = x

fn+1( x ) = y

fn+1( y ) = x

otherwise

fn+1( x ) = x

fn+1( y ) = y

fn+1( s ) = s    for all other s ∈ Dn+1

Requirements

- fn ⊆ fn+1

- fn+1 is bijection on Dn+1

- fn+1 is length preserving

- fn+1 differs from gn+1

- fn+1 is almost identity

Q.E.D.



Main Theorem

Suppose it is. By previous lemma,

let  f = ∪i∈Nat fi

f is equal to none of {g1, g2, …}

f is a total function

Because each singleton {si} regular set must be 

covered by Di=dom(fi) eventually

f is LSI  (in fact, length-preserving)

f is IRP

next page

The class of IRP∩LSI transformations

is not recursively enumerable.



Main Theorem

f is IRP  (In fact, f is FRP by almost the same proof, too.)

Take any regular set Ri.

If Ri ⊆ Di

Since fi is bijection & identity except fin. points,

f-1(Ri) =  fi
-1(Ri)  differs only finitely from Ri

 regular

If ～Ri ⊆ Di

Similarly, f-1(～Ri) is regular

f is also a bijection, so f-1(Ri)=～f-1(～Ri)

 regular
Contradiction.

Q.E.D.



Notes

If {g1, g2, … } is an enumeration of 

computable total functions,

Then the f is a computable function.

f-1 (as a mapping on regular languages) is 

computable.

<Summary>  There exists f such that

- f :: string string is computable & total

- f-1 :: REG REG is computable & total

- f is length-preserving, IRP, and FRP

- f is not in MSOTT = MTT*∩LSI


