IRPNLSI is not RE

(Introduction of the manuscript:
Tetsuya Ishiu, "IRP is Strictly Larger Than MTT"

http://twitdoc.com/c/xrwhnm)

presentation by Kazuhiro Inaba (NIl, kinaba@nii.ac.jp)

IPL-Group Seminar
May 25, 2010

mailto:kinaba@nii.ac.jp
http://twitdoc.com/c/xrwhnm
http://twitdoc.com/c/xrwhnm
http://twitdoc.com/c/xrwhnm

The Talk is about a Property on...

String/Tree Transformations

e.g.,

and

dup(s) =s ++s

reverse([]) =[]
reverse(x:xs)= reverse(xs)++[x]

Regular Languages

e.g.,

a*|b* a((a]b)*|c)*b

The Property IRP

Inverse Regularity Preserving
A function f is IRP iff

For any regular language L,
the inv. img. f'(L) = {s | f(s) € L} is regular

Example: “dup” and “reverse”

Example:
dup(s) =
,, S ++ S

Agenda

Why you should be interested in IRP?

IRP-based typechecking
Always-IRP computation models

Q: “Do the models cover all IRP?”
A: “No, IRPNLSI is not RE.”

Proof Tech. 1: Clever diagonalization
Proof Tech. 2: Slenderness of languages

Why IRP?

Typechecking f :: Ly— Loyt ?

Verify that a transformation always
generates valid outputs from valid inputs.

Ly

XSLT Template for

formating bookmarks XBEL Schema XHTML Schema

String not containing

PHP Script Arbitrary String “cscript>”

Why IRP?

Typechecking f :: Ly— Loyt ?
If f is IRP, we can check this by ...

f is type-correct
s f(Lin) € Loyt

= Lin &€ F1(Loyr)

(for experts: fis assumed to be deterministic)

FAQ: Why Irp>

ForwardRP also enables typechecking
FRP-based checking: f(L,y) € Loy
IRP-based checking : L,y S f1(Loyt)

Reasons

IRP provides more useful counter examples.

Many functions in practice tend to be IRP,
but not so for FRP. E.g., “dup”.

IRP-Based Typechecking

Not all transformations are IRP

The trend is to define a restricted
language whose programs are always IRP

and present sound & complete
typechecking for them

or use them as clearly defined targets for
approximate checking

Famous Computation Models of
IRP Tree Transformations

(note: X* :={f1-f2-..-fn | neNat, fieX })

/MTT* = PTT* = ATT* =

o

/
M | p PTT
MTT [Engelfriet&Vogler 1985] [Milo&Suciug&
= ~ Vianu 2000]
-
ATI [Fulop 1981] - ~ Bq\
MSOTT T LGM
[Courcelle 1994] [Thatcher70,

\Qiounds70] - /

One Example: MTT

MTT = The class of functions on trees defined
by (mutual) structural recursion +
accumulating parameters

MTT* = Finite composition of MTTs

MTT ::= FUN .. FUN
FUN ::= f(A(X{,w5X,) 5y Yis-sYK) = RHS

MRHS ::= C(RHS, .. , RHS)
| f(X;, RHS, .., RHS) | vy;

start(A(Xy)) -» double(x;, double(x;, E))
m_doub'le(A(X{), Yyy) - double(x;, double(x;, Y1))
double(B, y;) =~ CCy;, y;)

Question

Do they cover all IRP transformations?

MTT* =PTT*=ATT*=.. =IRP ?
C is known
D 7!

(Attribution: I’ve first heard this question from
Sebastian Maneth, who heard it from Keisuke Nakano)

Answer: "No"

K. Inaba, PPL 2010 Short Presentation
n 2AAn
A

« ') « \E1)
tower(“a..a”) = “aa...aa

where 2**0=1, 2*"(n+1)=22""n
is IRP but not in MTT*

But its growth is toooooooooo fast!

_

\

Aren’t there any “milder” counterexample?)

LSI: Linear Size Increase =
Jc. vt. len(f(1))<c °* len(t)

/MTT* =PTT* =ATT" = ... \

e =3
(i S
(ATT (\
((|)
= MSOTT*
= (MTT*=PTT*=...)NLSI
= (MTTNLSI)* = ... \LJ /

k\\\

New Question

MSOTT
= (MTT*=PTT*=ATT*=...)NLS|
= IRP N LSI ?

C is known
D7

Answer: "No"

There exists a IRPNLSI transformation
that cannot be written in MSOTT

Main Theorem of This Talk

The class of IRPNLSI transformations

is not recursively enumerable.
(There’s no Turing machine that enumerates all of them)

THE PROOF

Overview

The class of IRPNLSI transformations

is not recursively enumerable.
(There’s no Turing machine that enumerates all of them)

Basic idea is
the Diagonalization (X1£

ke 25)

“Give me a enumeration {g1, g2, g3, ...} of the

class of functions. Then |

will show you a

function f not in the enumeration.”

Diagonalization

(Assuming a fixed alphabet,) we can
enumerate all string/trees: {t1, t2, t3, ...}

Given enumeration {g1, g2, g3, ...} of the class

t1 t2 t3 t4
We construct f as: e
f(ti) := arbitrary tree S
except gi(ti) g2 X
Caution! g3 X

f may not be IRP nor LSI g4 X

Diagonalization

The class of IRPNLSI transformations

is not recursively enumerable.
(There’s no Turing machine that enumerates all of them)

What we really want is this:

“Give me a enumeration {g1, g2, g3, ...}
of the IRP N LSI functions. Then | will
show you a function f not in the
enumeration but in IRPNLSI.”

which derives contradiction.

Diagonalization

We can enumerate all regular languages:
{R1, R2, R3, ...}

Given enumeration {g1, g2, g3, ...} of the class

R1 R2 R3 R4
We construct f so that: e
f(t) = gi(t) for some 22 o
t {R1,R2,...,Ri} o3 «

f-1(Ri) = almost Ri

Preparation

Known facts on Regular Languages
All finite sets are regular

They are closed under boolean ops.

If R1, R2 € REG then
R1 N R2 € REG

R1 U R2 € REG
~R1 € REG

“Slenderness” is decidable

[Paun&Salomaa 1993] “Language-Theoretic Problems Arising from
Richelieu Cryptosystems”, TCS(116), pp.339-357

Preparation: Slenderness

|

A set L of string is slender iff
3c. Vn. #{s | s€L, len(s)=n}

1A
)

{1, 11, 111, 1111, ..} is slender

{0, 1, 10, 11, 100, 101, ...} is not slender
L1,L2 is slender - L1UL2 is slender

L1,L2 is co-slender - L1MNL2 is co-slender

Co-slender & complement is slender

Not co-slender < a plenty of supply of
non-members

Let {94, 9, ...
Let {R{, R,, ...

Main Lemma

} be an enumeration of total functions.
} be an enumeration of all regular langs.

Then we can construct {(f,,D,), (f{,D4), ...} such that

O=focficf,c # increasing list of partial functions

®=D, € D, c D2 C
Either R, € D; or NR,- c D,

eventually covers all
regular languages

IxeD;. fi(x) # g;(x) # different from every g,
D, is not co-slender # technical detail

f. is bijective on D,

almost identity

For all but finitely many x€D;, fi(X) =X (hence IRP)
vxeD;. len(f;(x)) = len(x) # linear size increase

/Requirements \
d - D, must cover
PI"OOf Of The MClIn either Rn+1 or ~Rn+1
: - D,,; must not be
By Induction co-slender
fo=Dg=0 - D,,.; must have

Suppose we already have f, elerr;sngofdistinguish
construct f._. and D,,. \ 1 3Nd fi -

/Set of / \\
AllStrings [D__ . = dom(f,,)

;
[D, = dom(f,) JR“” +
\

U where ., = 8.,)

Proof of the Main Lemma

D, is not co-slender. =
Take x,y € ~D, s.t. len(x)=len(y) but x=zy

/Requi rements \

Then Take - D,,.; must cover
Dn+1 ‘= Dn U {x,y} U Rn either R ,, or ~R .,
if it is not co-slender : Dn+1l mgst not be
co-slender
D,.. :=D, U {X,y} U ~R |-
. - D,.1 must have
otherwise 1this becomes elems to distinguish

not-co-slender!
Qnﬂ and fn+1 /1

Proof of the Main Lemma

We then construct f_,,
fo.(s)="~f(s) if seD,

if X) = X ‘
Sne1(X) /Requirements A
fn+1(X)=y 'fngfn+1 |
fra(y) =X - f_,, is bijection on D,,,

otherwise - f,.1 1s length preserving
£ (x)=x - f..q differs from g, , ‘

n+1 {fnﬂ is almost identity)

fn+1(y) = y

f..1(s)=s forall otherseD,,,

Q.E.D.

The class of IRPNLSI transformations
is not recursively enumerable.

Suppose it is. By previous lemma,
let f = UieNat fi
f is equal to none of {g,, g,, ...}

f is a total function

Because each singleton {s:} regular set must be
covered by D;=dom(f;) eventually

fis LSI (in fact, length-preserving)
fis IRP

next page

Main Theorem

f is IRP (In fact, f is FRP by almost the same proof, too.)
Take any regular set R..
If R, < D.
Since f. is bijection & identity except fin. points,
f-1(R) = f.1(R)) differs only finitely from R
=> regular
If ~R. < D,
Similarly, f-1(~R,) is regular
f is also a bijection, so f1(R,)=~f1(~R))
=> regular

Contradiction.

Q.E.D.

Notes

If {g1, g2, ... } is an enumeration of
computable total functions,

Then the f is a computable function.

f-1 (as a mapping on regular languages) is
computable.

<Summary> There exists f such that
- f :: string 2 string is computable & total
- f1:: REG=> REG is computable & total
- f is length-preserving, IRP, and FRP
- f is not in MSOTT = MTT*NLSI

